Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus

Autores
Villanueva, Maria Cecilia; Bertellotti, Nestor Marcelo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Capsule: Using simulations in a geographical information system our results showed that systematic sampling with quadrats was the most accurate, precise and cost-effective method to survey Magellanic Penguin colonies. Aims: To determine which sampling method gives better estimations of penguin abundance. Methods: A virtual colony was generated deriving spatial parameters from a real survey and applying Kriging interpolation. Three sampling methods were then applied on this virtual colony: random sampling with quadrats; systematic sampling with quadrats; systematic sampling with fixed-width transects. The estimated abundance for each trial was compared to the abundance of the virtual colony to have a measure of accuracy and precision. Results: Systematic sampling with quadrats estimated penguin abundance better than random or systematic sampling with transects since it achieved 100% accuracy and great precision after sampling only 2.1% of the virtual colony. Conclusion: The use of a simulated colony allowed the comparison of several sampling methods traditionally used in Magellanic Penguin surveys. The results of this study are important in order to standardize sampling protocols for Magellanic Penguins and to have more comparable estimations to detect trends over time. Also, the methodological approach used here could be used to assess sampling methods for other colonial bird species.
Fil: Villanueva, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina
Fil: Bertellotti, Nestor Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Materia
Sample Methods
Colony Size
Penguins
Patagonia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3544

id CONICETDig_a51f3c3b8a66fc7118050f131ba41e0f
oai_identifier_str oai:ri.conicet.gov.ar:11336/3544
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicusVillanueva, Maria CeciliaBertellotti, Nestor MarceloSample MethodsColony SizePenguinsPatagoniahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Capsule: Using simulations in a geographical information system our results showed that systematic sampling with quadrats was the most accurate, precise and cost-effective method to survey Magellanic Penguin colonies. Aims: To determine which sampling method gives better estimations of penguin abundance. Methods: A virtual colony was generated deriving spatial parameters from a real survey and applying Kriging interpolation. Three sampling methods were then applied on this virtual colony: random sampling with quadrats; systematic sampling with quadrats; systematic sampling with fixed-width transects. The estimated abundance for each trial was compared to the abundance of the virtual colony to have a measure of accuracy and precision. Results: Systematic sampling with quadrats estimated penguin abundance better than random or systematic sampling with transects since it achieved 100% accuracy and great precision after sampling only 2.1% of the virtual colony. Conclusion: The use of a simulated colony allowed the comparison of several sampling methods traditionally used in Magellanic Penguin surveys. The results of this study are important in order to standardize sampling protocols for Magellanic Penguins and to have more comparable estimations to detect trends over time. Also, the methodological approach used here could be used to assess sampling methods for other colonial bird species.Fil: Villanueva, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Bertellotti, Nestor Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaTaylor & Francis2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3544Villanueva, Maria Cecilia; Bertellotti, Nestor Marcelo; Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus; Taylor & Francis; Bird Study; 61; 3; 7-2014; 1-70006-3657enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00063657.2014.942594info:eu-repo/semantics/altIdentifier/doi/DOI:10.1080/00063657.2014.942594info:eu-repo/semantics/altIdentifier/issn/0006-3657info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:18Zoai:ri.conicet.gov.ar:11336/3544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:18.893CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
title Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
spellingShingle Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
Villanueva, Maria Cecilia
Sample Methods
Colony Size
Penguins
Patagonia
title_short Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
title_full Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
title_fullStr Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
title_full_unstemmed Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
title_sort Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus
dc.creator.none.fl_str_mv Villanueva, Maria Cecilia
Bertellotti, Nestor Marcelo
author Villanueva, Maria Cecilia
author_facet Villanueva, Maria Cecilia
Bertellotti, Nestor Marcelo
author_role author
author2 Bertellotti, Nestor Marcelo
author2_role author
dc.subject.none.fl_str_mv Sample Methods
Colony Size
Penguins
Patagonia
topic Sample Methods
Colony Size
Penguins
Patagonia
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Capsule: Using simulations in a geographical information system our results showed that systematic sampling with quadrats was the most accurate, precise and cost-effective method to survey Magellanic Penguin colonies. Aims: To determine which sampling method gives better estimations of penguin abundance. Methods: A virtual colony was generated deriving spatial parameters from a real survey and applying Kriging interpolation. Three sampling methods were then applied on this virtual colony: random sampling with quadrats; systematic sampling with quadrats; systematic sampling with fixed-width transects. The estimated abundance for each trial was compared to the abundance of the virtual colony to have a measure of accuracy and precision. Results: Systematic sampling with quadrats estimated penguin abundance better than random or systematic sampling with transects since it achieved 100% accuracy and great precision after sampling only 2.1% of the virtual colony. Conclusion: The use of a simulated colony allowed the comparison of several sampling methods traditionally used in Magellanic Penguin surveys. The results of this study are important in order to standardize sampling protocols for Magellanic Penguins and to have more comparable estimations to detect trends over time. Also, the methodological approach used here could be used to assess sampling methods for other colonial bird species.
Fil: Villanueva, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina
Fil: Bertellotti, Nestor Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
description Capsule: Using simulations in a geographical information system our results showed that systematic sampling with quadrats was the most accurate, precise and cost-effective method to survey Magellanic Penguin colonies. Aims: To determine which sampling method gives better estimations of penguin abundance. Methods: A virtual colony was generated deriving spatial parameters from a real survey and applying Kriging interpolation. Three sampling methods were then applied on this virtual colony: random sampling with quadrats; systematic sampling with quadrats; systematic sampling with fixed-width transects. The estimated abundance for each trial was compared to the abundance of the virtual colony to have a measure of accuracy and precision. Results: Systematic sampling with quadrats estimated penguin abundance better than random or systematic sampling with transects since it achieved 100% accuracy and great precision after sampling only 2.1% of the virtual colony. Conclusion: The use of a simulated colony allowed the comparison of several sampling methods traditionally used in Magellanic Penguin surveys. The results of this study are important in order to standardize sampling protocols for Magellanic Penguins and to have more comparable estimations to detect trends over time. Also, the methodological approach used here could be used to assess sampling methods for other colonial bird species.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3544
Villanueva, Maria Cecilia; Bertellotti, Nestor Marcelo; Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus; Taylor & Francis; Bird Study; 61; 3; 7-2014; 1-7
0006-3657
url http://hdl.handle.net/11336/3544
identifier_str_mv Villanueva, Maria Cecilia; Bertellotti, Nestor Marcelo; Testing methods to estimate abundance of Magellanic Penguins Spheniscus magellanicus; Taylor & Francis; Bird Study; 61; 3; 7-2014; 1-7
0006-3657
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00063657.2014.942594
info:eu-repo/semantics/altIdentifier/doi/DOI:10.1080/00063657.2014.942594
info:eu-repo/semantics/altIdentifier/issn/0006-3657
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979940086054912
score 12.48226