Polarization dynamics: a study of individuals shifting between political communities on social media
- Autores
- Albanese, Federico; Feuerstein, Esteban Zindel; Balenzuela, Pablo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose-Led Publishing, find out more.Paper • The following article isOpen accessPolarization dynamics: a study of individuals shifting between political communities on social mediaFederico Albanese*, Esteban Feuerstein and Pablo BalenzuelaPublished 2 August 2024 • © 2024 The Author(s). Published by IOP Publishing LtdJournal of Physics: Complexity, Volume 5, Number 3Citation Federico Albanese et al 2024 J. Phys. Complex. 5 035008DOI 10.1088/2632-072X/ad679dDownloadArticle PDFAuthorsFiguresTablesReferencesOpen scienceDownload PDFArticle metrics496 Total downloadsArticle has an altmetric score of 3SubmitSubmit to this JournalShare this articleArticle informationAbstractIndividuals engaging on social media often tend to establish online communities where interactions predominantly occur among like-minded peers. While considerable efforts have been devoted to studying and delineating these communities, there has been limited attention directed towards individuals who diverge from these patterns. In this study, we examine the community structure of re-post networks within the context of a polarized political environment at two different times. We specifically identify individuals who consistently switch between opposing communities and analyze the key features that distinguish them. Our investigation focuses on two crucial aspects of these users: the topological properties of their interactions and the political bias in the content of their posts. Our analysis is based on a dataset comprising 2 million tweets related to US President Donald Trump, coupled with data from over 100 000 individual user accounts spanning the 2020 US presidential election year. Our findings indicate that individuals who switch communities exhibit disparities compared to those who remain within the same communities, both in terms of the topological aspects of their interaction patterns (pagerank, degree, betweenness centrality.) and in the sentiment bias of their content towards Donald Trump.
Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Feuerstein, Esteban Zindel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Balenzuela, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Complex Networks
Social Networks
political polarization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264093
Ver los metadatos del registro completo
id |
CONICETDig_a4dff7ee5f614cad1cd89270bf630d32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264093 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polarization dynamics: a study of individuals shifting between political communities on social mediaAlbanese, FedericoFeuerstein, Esteban ZindelBalenzuela, PabloComplex NetworksSocial Networkspolitical polarizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Purpose-Led Publishing, find out more.Paper • The following article isOpen accessPolarization dynamics: a study of individuals shifting between political communities on social mediaFederico Albanese*, Esteban Feuerstein and Pablo BalenzuelaPublished 2 August 2024 • © 2024 The Author(s). Published by IOP Publishing LtdJournal of Physics: Complexity, Volume 5, Number 3Citation Federico Albanese et al 2024 J. Phys. Complex. 5 035008DOI 10.1088/2632-072X/ad679dDownloadArticle PDFAuthorsFiguresTablesReferencesOpen scienceDownload PDFArticle metrics496 Total downloadsArticle has an altmetric score of 3SubmitSubmit to this JournalShare this articleArticle informationAbstractIndividuals engaging on social media often tend to establish online communities where interactions predominantly occur among like-minded peers. While considerable efforts have been devoted to studying and delineating these communities, there has been limited attention directed towards individuals who diverge from these patterns. In this study, we examine the community structure of re-post networks within the context of a polarized political environment at two different times. We specifically identify individuals who consistently switch between opposing communities and analyze the key features that distinguish them. Our investigation focuses on two crucial aspects of these users: the topological properties of their interactions and the political bias in the content of their posts. Our analysis is based on a dataset comprising 2 million tweets related to US President Donald Trump, coupled with data from over 100 000 individual user accounts spanning the 2020 US presidential election year. Our findings indicate that individuals who switch communities exhibit disparities compared to those who remain within the same communities, both in terms of the topological aspects of their interaction patterns (pagerank, degree, betweenness centrality.) and in the sentiment bias of their content towards Donald Trump.Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Feuerstein, Esteban Zindel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Balenzuela, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264093Albanese, Federico; Feuerstein, Esteban Zindel; Balenzuela, Pablo; Polarization dynamics: a study of individuals shifting between political communities on social media; IOP Publishing; Journal of Physics: Complexity; 5; 3; 8-2024; 1-92632-072XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-072X/ad679dinfo:eu-repo/semantics/altIdentifier/doi/10.1088/2632-072X/ad679dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:52Zoai:ri.conicet.gov.ar:11336/264093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:52.844CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polarization dynamics: a study of individuals shifting between political communities on social media |
title |
Polarization dynamics: a study of individuals shifting between political communities on social media |
spellingShingle |
Polarization dynamics: a study of individuals shifting between political communities on social media Albanese, Federico Complex Networks Social Networks political polarization |
title_short |
Polarization dynamics: a study of individuals shifting between political communities on social media |
title_full |
Polarization dynamics: a study of individuals shifting between political communities on social media |
title_fullStr |
Polarization dynamics: a study of individuals shifting between political communities on social media |
title_full_unstemmed |
Polarization dynamics: a study of individuals shifting between political communities on social media |
title_sort |
Polarization dynamics: a study of individuals shifting between political communities on social media |
dc.creator.none.fl_str_mv |
Albanese, Federico Feuerstein, Esteban Zindel Balenzuela, Pablo |
author |
Albanese, Federico |
author_facet |
Albanese, Federico Feuerstein, Esteban Zindel Balenzuela, Pablo |
author_role |
author |
author2 |
Feuerstein, Esteban Zindel Balenzuela, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Networks Social Networks political polarization |
topic |
Complex Networks Social Networks political polarization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Purpose-Led Publishing, find out more.Paper • The following article isOpen accessPolarization dynamics: a study of individuals shifting between political communities on social mediaFederico Albanese*, Esteban Feuerstein and Pablo BalenzuelaPublished 2 August 2024 • © 2024 The Author(s). Published by IOP Publishing LtdJournal of Physics: Complexity, Volume 5, Number 3Citation Federico Albanese et al 2024 J. Phys. Complex. 5 035008DOI 10.1088/2632-072X/ad679dDownloadArticle PDFAuthorsFiguresTablesReferencesOpen scienceDownload PDFArticle metrics496 Total downloadsArticle has an altmetric score of 3SubmitSubmit to this JournalShare this articleArticle informationAbstractIndividuals engaging on social media often tend to establish online communities where interactions predominantly occur among like-minded peers. While considerable efforts have been devoted to studying and delineating these communities, there has been limited attention directed towards individuals who diverge from these patterns. In this study, we examine the community structure of re-post networks within the context of a polarized political environment at two different times. We specifically identify individuals who consistently switch between opposing communities and analyze the key features that distinguish them. Our investigation focuses on two crucial aspects of these users: the topological properties of their interactions and the political bias in the content of their posts. Our analysis is based on a dataset comprising 2 million tweets related to US President Donald Trump, coupled with data from over 100 000 individual user accounts spanning the 2020 US presidential election year. Our findings indicate that individuals who switch communities exhibit disparities compared to those who remain within the same communities, both in terms of the topological aspects of their interaction patterns (pagerank, degree, betweenness centrality.) and in the sentiment bias of their content towards Donald Trump. Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Feuerstein, Esteban Zindel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Balenzuela, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Purpose-Led Publishing, find out more.Paper • The following article isOpen accessPolarization dynamics: a study of individuals shifting between political communities on social mediaFederico Albanese*, Esteban Feuerstein and Pablo BalenzuelaPublished 2 August 2024 • © 2024 The Author(s). Published by IOP Publishing LtdJournal of Physics: Complexity, Volume 5, Number 3Citation Federico Albanese et al 2024 J. Phys. Complex. 5 035008DOI 10.1088/2632-072X/ad679dDownloadArticle PDFAuthorsFiguresTablesReferencesOpen scienceDownload PDFArticle metrics496 Total downloadsArticle has an altmetric score of 3SubmitSubmit to this JournalShare this articleArticle informationAbstractIndividuals engaging on social media often tend to establish online communities where interactions predominantly occur among like-minded peers. While considerable efforts have been devoted to studying and delineating these communities, there has been limited attention directed towards individuals who diverge from these patterns. In this study, we examine the community structure of re-post networks within the context of a polarized political environment at two different times. We specifically identify individuals who consistently switch between opposing communities and analyze the key features that distinguish them. Our investigation focuses on two crucial aspects of these users: the topological properties of their interactions and the political bias in the content of their posts. Our analysis is based on a dataset comprising 2 million tweets related to US President Donald Trump, coupled with data from over 100 000 individual user accounts spanning the 2020 US presidential election year. Our findings indicate that individuals who switch communities exhibit disparities compared to those who remain within the same communities, both in terms of the topological aspects of their interaction patterns (pagerank, degree, betweenness centrality.) and in the sentiment bias of their content towards Donald Trump. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264093 Albanese, Federico; Feuerstein, Esteban Zindel; Balenzuela, Pablo; Polarization dynamics: a study of individuals shifting between political communities on social media; IOP Publishing; Journal of Physics: Complexity; 5; 3; 8-2024; 1-9 2632-072X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264093 |
identifier_str_mv |
Albanese, Federico; Feuerstein, Esteban Zindel; Balenzuela, Pablo; Polarization dynamics: a study of individuals shifting between political communities on social media; IOP Publishing; Journal of Physics: Complexity; 5; 3; 8-2024; 1-9 2632-072X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-072X/ad679d info:eu-repo/semantics/altIdentifier/doi/10.1088/2632-072X/ad679d |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614234450690048 |
score |
13.070432 |