Performance assessment of low-energy buildings in central Argentina
- Autores
- Filippin, Maria Celina; Beascochea, A.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 8C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix.
Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Beascochea, A.. Universidad Nacional de La Pampa; Argentina - Materia
-
Energy and thermal performance
Low-energy buildings
Fossil energy
Energy consumption - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244064
Ver los metadatos del registro completo
id |
CONICETDig_a475b9853627f782b0b30154bae516ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244064 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Performance assessment of low-energy buildings in central ArgentinaFilippin, Maria CelinaBeascochea, A.Energy and thermal performanceLow-energy buildingsFossil energyEnergy consumptionhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 8C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix.Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Beascochea, A.. Universidad Nacional de La Pampa; ArgentinaElsevier Science SA2007-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244064Filippin, Maria Celina; Beascochea, A.; Performance assessment of low-energy buildings in central Argentina; Elsevier Science SA; Energy and Buildings; 39; 5; 5-2007; 546-5570378-7788CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778806002301info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2006.08.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:09Zoai:ri.conicet.gov.ar:11336/244064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:09.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Performance assessment of low-energy buildings in central Argentina |
title |
Performance assessment of low-energy buildings in central Argentina |
spellingShingle |
Performance assessment of low-energy buildings in central Argentina Filippin, Maria Celina Energy and thermal performance Low-energy buildings Fossil energy Energy consumption |
title_short |
Performance assessment of low-energy buildings in central Argentina |
title_full |
Performance assessment of low-energy buildings in central Argentina |
title_fullStr |
Performance assessment of low-energy buildings in central Argentina |
title_full_unstemmed |
Performance assessment of low-energy buildings in central Argentina |
title_sort |
Performance assessment of low-energy buildings in central Argentina |
dc.creator.none.fl_str_mv |
Filippin, Maria Celina Beascochea, A. |
author |
Filippin, Maria Celina |
author_facet |
Filippin, Maria Celina Beascochea, A. |
author_role |
author |
author2 |
Beascochea, A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Energy and thermal performance Low-energy buildings Fossil energy Energy consumption |
topic |
Energy and thermal performance Low-energy buildings Fossil energy Energy consumption |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 8C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix. Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Beascochea, A.. Universidad Nacional de La Pampa; Argentina |
description |
This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 8C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244064 Filippin, Maria Celina; Beascochea, A.; Performance assessment of low-energy buildings in central Argentina; Elsevier Science SA; Energy and Buildings; 39; 5; 5-2007; 546-557 0378-7788 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244064 |
identifier_str_mv |
Filippin, Maria Celina; Beascochea, A.; Performance assessment of low-energy buildings in central Argentina; Elsevier Science SA; Energy and Buildings; 39; 5; 5-2007; 546-557 0378-7788 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778806002301 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enbuild.2006.08.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613947885355008 |
score |
13.070432 |