Inducing a topological transition in graphene nanoribbon superlattices by external strain
- Autores
- Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; Bringa, Eduardo Marcial; Munoz, Francisco
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.
Fil: Flores Gutierréz, Esteban. Universidad de Chile; Chile
Fil: Mella, José D.. Universidad de Chile; Chile
Fil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Parra, C.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; Chile - Materia
-
Graphene nanoribbons
Topological states
Strain - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188150
Ver los metadatos del registro completo
id |
CONICETDig_a42b36097a6601a8ff772f8c219ae7c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188150 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inducing a topological transition in graphene nanoribbon superlattices by external strainFlores Gutierréz, EstebanMella, José D.Aparicio, EmilianoGonzalez, Rafael I.Parra, C.Bringa, Eduardo MarcialMunoz, FranciscoGraphene nanoribbonsTopological statesStrainhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.Fil: Flores Gutierréz, Esteban. Universidad de Chile; ChileFil: Mella, José D.. Universidad de Chile; ChileFil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Parra, C.. Universidad Mayor; ChileFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileFil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; ChileRoyal Society of Chemistry2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188150Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-71431463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/D2CP00038Einfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp00038e/unauthinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2109.10278info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:38Zoai:ri.conicet.gov.ar:11336/188150instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:38.924CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
title |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
spellingShingle |
Inducing a topological transition in graphene nanoribbon superlattices by external strain Flores Gutierréz, Esteban Graphene nanoribbons Topological states Strain |
title_short |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
title_full |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
title_fullStr |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
title_full_unstemmed |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
title_sort |
Inducing a topological transition in graphene nanoribbon superlattices by external strain |
dc.creator.none.fl_str_mv |
Flores Gutierréz, Esteban Mella, José D. Aparicio, Emiliano Gonzalez, Rafael I. Parra, C. Bringa, Eduardo Marcial Munoz, Francisco |
author |
Flores Gutierréz, Esteban |
author_facet |
Flores Gutierréz, Esteban Mella, José D. Aparicio, Emiliano Gonzalez, Rafael I. Parra, C. Bringa, Eduardo Marcial Munoz, Francisco |
author_role |
author |
author2 |
Mella, José D. Aparicio, Emiliano Gonzalez, Rafael I. Parra, C. Bringa, Eduardo Marcial Munoz, Francisco |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Graphene nanoribbons Topological states Strain |
topic |
Graphene nanoribbons Topological states Strain |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states. Fil: Flores Gutierréz, Esteban. Universidad de Chile; Chile Fil: Mella, José D.. Universidad de Chile; Chile Fil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile Fil: Parra, C.. Universidad Mayor; Chile Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile Fil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; Chile |
description |
Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188150 Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-7143 1463-9076 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/188150 |
identifier_str_mv |
Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-7143 1463-9076 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/D2CP00038E info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp00038e/unauth info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2109.10278 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981072812376064 |
score |
12.48226 |