Inducing a topological transition in graphene nanoribbon superlattices by external strain

Autores
Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; Bringa, Eduardo Marcial; Munoz, Francisco
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.
Fil: Flores Gutierréz, Esteban. Universidad de Chile; Chile
Fil: Mella, José D.. Universidad de Chile; Chile
Fil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Parra, C.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; Chile
Materia
Graphene nanoribbons
Topological states
Strain
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/188150

id CONICETDig_a42b36097a6601a8ff772f8c219ae7c8
oai_identifier_str oai:ri.conicet.gov.ar:11336/188150
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inducing a topological transition in graphene nanoribbon superlattices by external strainFlores Gutierréz, EstebanMella, José D.Aparicio, EmilianoGonzalez, Rafael I.Parra, C.Bringa, Eduardo MarcialMunoz, FranciscoGraphene nanoribbonsTopological statesStrainhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.Fil: Flores Gutierréz, Esteban. Universidad de Chile; ChileFil: Mella, José D.. Universidad de Chile; ChileFil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Parra, C.. Universidad Mayor; ChileFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileFil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; ChileRoyal Society of Chemistry2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188150Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-71431463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/D2CP00038Einfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp00038e/unauthinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2109.10278info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:38Zoai:ri.conicet.gov.ar:11336/188150instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:38.924CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inducing a topological transition in graphene nanoribbon superlattices by external strain
title Inducing a topological transition in graphene nanoribbon superlattices by external strain
spellingShingle Inducing a topological transition in graphene nanoribbon superlattices by external strain
Flores Gutierréz, Esteban
Graphene nanoribbons
Topological states
Strain
title_short Inducing a topological transition in graphene nanoribbon superlattices by external strain
title_full Inducing a topological transition in graphene nanoribbon superlattices by external strain
title_fullStr Inducing a topological transition in graphene nanoribbon superlattices by external strain
title_full_unstemmed Inducing a topological transition in graphene nanoribbon superlattices by external strain
title_sort Inducing a topological transition in graphene nanoribbon superlattices by external strain
dc.creator.none.fl_str_mv Flores Gutierréz, Esteban
Mella, José D.
Aparicio, Emiliano
Gonzalez, Rafael I.
Parra, C.
Bringa, Eduardo Marcial
Munoz, Francisco
author Flores Gutierréz, Esteban
author_facet Flores Gutierréz, Esteban
Mella, José D.
Aparicio, Emiliano
Gonzalez, Rafael I.
Parra, C.
Bringa, Eduardo Marcial
Munoz, Francisco
author_role author
author2 Mella, José D.
Aparicio, Emiliano
Gonzalez, Rafael I.
Parra, C.
Bringa, Eduardo Marcial
Munoz, Francisco
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Graphene nanoribbons
Topological states
Strain
topic Graphene nanoribbons
Topological states
Strain
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.
Fil: Flores Gutierréz, Esteban. Universidad de Chile; Chile
Fil: Mella, José D.. Universidad de Chile; Chile
Fil: Aparicio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Parra, C.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad de Chile; Chile
description Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/188150
Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-7143
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/188150
identifier_str_mv Flores Gutierréz, Esteban; Mella, José D.; Aparicio, Emiliano; Gonzalez, Rafael I.; Parra, C.; et al.; Inducing a topological transition in graphene nanoribbon superlattices by external strain; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 24; 11; 3-2022; 7134-7143
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/D2CP00038E
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp00038e/unauth
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2109.10278
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981072812376064
score 12.48226