Exploring jet-launching conditions for supergiant fast X-ray transients
- Autores
- García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.
Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; Alemania
Fil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
NEUTRON STARS
MAGNETIC FIELD
ACCRETION
X-RAY BINARIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5261
Ver los metadatos del registro completo
id |
CONICETDig_a3d49d84b8e8e8b393eec96c7b47c570 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5261 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring jet-launching conditions for supergiant fast X-ray transientsGarcía, FedericoRomero, Gustavo EstebanAguilera, Deborah NancyNEUTRON STARSMAGNETIC FIELDACCRETIONX-RAY BINARIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; AlemaniaFil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaEDP Sciences2014-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5261García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-80004-6361enginfo:eu-repo/semantics/altIdentifier/arxiv/1404.7243v1info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2014/05/aa23157-13/aa23157-13.htmlinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201323157info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1404.7243v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:29Zoai:ri.conicet.gov.ar:11336/5261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:30.012CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring jet-launching conditions for supergiant fast X-ray transients |
title |
Exploring jet-launching conditions for supergiant fast X-ray transients |
spellingShingle |
Exploring jet-launching conditions for supergiant fast X-ray transients García, Federico NEUTRON STARS MAGNETIC FIELD ACCRETION X-RAY BINARIES |
title_short |
Exploring jet-launching conditions for supergiant fast X-ray transients |
title_full |
Exploring jet-launching conditions for supergiant fast X-ray transients |
title_fullStr |
Exploring jet-launching conditions for supergiant fast X-ray transients |
title_full_unstemmed |
Exploring jet-launching conditions for supergiant fast X-ray transients |
title_sort |
Exploring jet-launching conditions for supergiant fast X-ray transients |
dc.creator.none.fl_str_mv |
García, Federico Romero, Gustavo Esteban Aguilera, Deborah Nancy |
author |
García, Federico |
author_facet |
García, Federico Romero, Gustavo Esteban Aguilera, Deborah Nancy |
author_role |
author |
author2 |
Romero, Gustavo Esteban Aguilera, Deborah Nancy |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NEUTRON STARS MAGNETIC FIELD ACCRETION X-RAY BINARIES |
topic |
NEUTRON STARS MAGNETIC FIELD ACCRETION X-RAY BINARIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients. Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; Alemania Fil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5261 García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-8 0004-6361 |
url |
http://hdl.handle.net/11336/5261 |
identifier_str_mv |
García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-8 0004-6361 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/1404.7243v1 info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2014/05/aa23157-13/aa23157-13.html info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201323157 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1404.7243v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082624859144192 |
score |
13.22299 |