Exploring jet-launching conditions for supergiant fast X-ray transients

Autores
García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.
Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; Alemania
Fil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
NEUTRON STARS
MAGNETIC FIELD
ACCRETION
X-RAY BINARIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5261

id CONICETDig_a3d49d84b8e8e8b393eec96c7b47c570
oai_identifier_str oai:ri.conicet.gov.ar:11336/5261
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring jet-launching conditions for supergiant fast X-ray transientsGarcía, FedericoRomero, Gustavo EstebanAguilera, Deborah NancyNEUTRON STARSMAGNETIC FIELDACCRETIONX-RAY BINARIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; AlemaniaFil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaEDP Sciences2014-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5261García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-80004-6361enginfo:eu-repo/semantics/altIdentifier/arxiv/1404.7243v1info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2014/05/aa23157-13/aa23157-13.htmlinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201323157info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1404.7243v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:29Zoai:ri.conicet.gov.ar:11336/5261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:30.012CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring jet-launching conditions for supergiant fast X-ray transients
title Exploring jet-launching conditions for supergiant fast X-ray transients
spellingShingle Exploring jet-launching conditions for supergiant fast X-ray transients
García, Federico
NEUTRON STARS
MAGNETIC FIELD
ACCRETION
X-RAY BINARIES
title_short Exploring jet-launching conditions for supergiant fast X-ray transients
title_full Exploring jet-launching conditions for supergiant fast X-ray transients
title_fullStr Exploring jet-launching conditions for supergiant fast X-ray transients
title_full_unstemmed Exploring jet-launching conditions for supergiant fast X-ray transients
title_sort Exploring jet-launching conditions for supergiant fast X-ray transients
dc.creator.none.fl_str_mv García, Federico
Romero, Gustavo Esteban
Aguilera, Deborah Nancy
author García, Federico
author_facet García, Federico
Romero, Gustavo Esteban
Aguilera, Deborah Nancy
author_role author
author2 Romero, Gustavo Esteban
Aguilera, Deborah Nancy
author2_role author
author
dc.subject.none.fl_str_mv NEUTRON STARS
MAGNETIC FIELD
ACCRETION
X-RAY BINARIES
topic NEUTRON STARS
MAGNETIC FIELD
ACCRETION
X-RAY BINARIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.
Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Romero, Gustavo Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia Física. (Centro Atómico Constituyentes) Proyecto Tandar; Argentina. Institute for Space Systems. German Aerospace Center; Alemania
Fil: Aguilera, Deborah Nancy. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Constituyentes); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ∼ 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ∼ 10^12 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M ~ 10−10 M⊙ yr^−1, surface magnetic fields can decay up to four orders of magnitude in ∼10^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind- accreting high-mass binary systems like supergiant fast X-ray transients.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5261
García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-8
0004-6361
url http://hdl.handle.net/11336/5261
identifier_str_mv García, Federico; Romero, Gustavo Esteban; Aguilera, Deborah Nancy; Exploring jet-launching conditions for supergiant fast X-ray transients; EDP Sciences; Astronomy and Astrophysics; 565; A122; 22-5-2014; 1-8
0004-6361
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/1404.7243v1
info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2014/05/aa23157-13/aa23157-13.html
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201323157
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1404.7243v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082624859144192
score 13.22299