Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata)
- Autores
- Brzek, Pawel; Lessner, Krista M.; Caviedes Vidal, Enrique Juan Raul; Karasov, William H.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It can be hypothesized that species with a wide or variable food niche are able to adjust their digestive physiology to current food type. In diet specialists, however, the capacity for such presumably costly plasticity is not necessary and flexibility of digestive physiology should be lower. Recently, we found that ontogenetic changes in the activity of digestive enzymes in house sparrow, a species that gradually consumes more carbohydrates during ontogeny, are strongly modified by diet composition. In the present study we examined digestive flexibility of nestling and adult zebra finches, typical diet specialists that consume only seeds after hatching. Both adult and nestling zebra finches could not thrive on a protein-rich and carbohydrate-free diet that supported normal development of young house sparrows. Mass-specific activity of intestinal carbohydrases (maltase and sucrase) was not elevated by higher diet carbohydrate content in both nestling and adult birds. Mass-specific activity of maltase changed less during ontogenetic development in zebra finch than in house sparrow. We conclude that the digestive physiology of zebra finch is adapted to process carbohydrate-rich food after hatching and is much less flexible than in house sparrow. We hypothesize that this difference might reflect the lack of a diet switch during ontogeny or result from high specialization to a narrow diet niche.
Fil: Brzek, Pawel. University of Wisconsin; Estados Unidos
Fil: Lessner, Krista M.. University of Wisconsin; Estados Unidos
Fil: Caviedes Vidal, Enrique Juan Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina
Fil: Karasov, William H.. University of Wisconsin; Estados Unidos - Materia
-
BIRDS
PLASTICITY
DIGESTIVE PHYSIOLOGY
Zebra finches - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132280
Ver los metadatos del registro completo
id |
CONICETDig_a3ce5037ea12a54922accd68a7bcb89c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132280 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata)Brzek, PawelLessner, Krista M.Caviedes Vidal, Enrique Juan RaulKarasov, William H.BIRDSPLASTICITYDIGESTIVE PHYSIOLOGYZebra fincheshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1It can be hypothesized that species with a wide or variable food niche are able to adjust their digestive physiology to current food type. In diet specialists, however, the capacity for such presumably costly plasticity is not necessary and flexibility of digestive physiology should be lower. Recently, we found that ontogenetic changes in the activity of digestive enzymes in house sparrow, a species that gradually consumes more carbohydrates during ontogeny, are strongly modified by diet composition. In the present study we examined digestive flexibility of nestling and adult zebra finches, typical diet specialists that consume only seeds after hatching. Both adult and nestling zebra finches could not thrive on a protein-rich and carbohydrate-free diet that supported normal development of young house sparrows. Mass-specific activity of intestinal carbohydrases (maltase and sucrase) was not elevated by higher diet carbohydrate content in both nestling and adult birds. Mass-specific activity of maltase changed less during ontogenetic development in zebra finch than in house sparrow. We conclude that the digestive physiology of zebra finch is adapted to process carbohydrate-rich food after hatching and is much less flexible than in house sparrow. We hypothesize that this difference might reflect the lack of a diet switch during ontogeny or result from high specialization to a narrow diet niche.Fil: Brzek, Pawel. University of Wisconsin; Estados UnidosFil: Lessner, Krista M.. University of Wisconsin; Estados UnidosFil: Caviedes Vidal, Enrique Juan Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Karasov, William H.. University of Wisconsin; Estados UnidosCompany of Biologists2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132280Brzek, Pawel; Lessner, Krista M.; Caviedes Vidal, Enrique Juan Raul; Karasov, William H.; Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata); Company of Biologists; Journal of Experimental Biology; 212; 9; 12-2009; 1284-12930022-0949CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.biologists.com/jeb/article/213/5/798/10081/Low-plasticity-in-digestive-physiology-constrainsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:01Zoai:ri.conicet.gov.ar:11336/132280instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:02.123CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
title |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
spellingShingle |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) Brzek, Pawel BIRDS PLASTICITY DIGESTIVE PHYSIOLOGY Zebra finches |
title_short |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
title_full |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
title_fullStr |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
title_full_unstemmed |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
title_sort |
Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata) |
dc.creator.none.fl_str_mv |
Brzek, Pawel Lessner, Krista M. Caviedes Vidal, Enrique Juan Raul Karasov, William H. |
author |
Brzek, Pawel |
author_facet |
Brzek, Pawel Lessner, Krista M. Caviedes Vidal, Enrique Juan Raul Karasov, William H. |
author_role |
author |
author2 |
Lessner, Krista M. Caviedes Vidal, Enrique Juan Raul Karasov, William H. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BIRDS PLASTICITY DIGESTIVE PHYSIOLOGY Zebra finches |
topic |
BIRDS PLASTICITY DIGESTIVE PHYSIOLOGY Zebra finches |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It can be hypothesized that species with a wide or variable food niche are able to adjust their digestive physiology to current food type. In diet specialists, however, the capacity for such presumably costly plasticity is not necessary and flexibility of digestive physiology should be lower. Recently, we found that ontogenetic changes in the activity of digestive enzymes in house sparrow, a species that gradually consumes more carbohydrates during ontogeny, are strongly modified by diet composition. In the present study we examined digestive flexibility of nestling and adult zebra finches, typical diet specialists that consume only seeds after hatching. Both adult and nestling zebra finches could not thrive on a protein-rich and carbohydrate-free diet that supported normal development of young house sparrows. Mass-specific activity of intestinal carbohydrases (maltase and sucrase) was not elevated by higher diet carbohydrate content in both nestling and adult birds. Mass-specific activity of maltase changed less during ontogenetic development in zebra finch than in house sparrow. We conclude that the digestive physiology of zebra finch is adapted to process carbohydrate-rich food after hatching and is much less flexible than in house sparrow. We hypothesize that this difference might reflect the lack of a diet switch during ontogeny or result from high specialization to a narrow diet niche. Fil: Brzek, Pawel. University of Wisconsin; Estados Unidos Fil: Lessner, Krista M.. University of Wisconsin; Estados Unidos Fil: Caviedes Vidal, Enrique Juan Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina Fil: Karasov, William H.. University of Wisconsin; Estados Unidos |
description |
It can be hypothesized that species with a wide or variable food niche are able to adjust their digestive physiology to current food type. In diet specialists, however, the capacity for such presumably costly plasticity is not necessary and flexibility of digestive physiology should be lower. Recently, we found that ontogenetic changes in the activity of digestive enzymes in house sparrow, a species that gradually consumes more carbohydrates during ontogeny, are strongly modified by diet composition. In the present study we examined digestive flexibility of nestling and adult zebra finches, typical diet specialists that consume only seeds after hatching. Both adult and nestling zebra finches could not thrive on a protein-rich and carbohydrate-free diet that supported normal development of young house sparrows. Mass-specific activity of intestinal carbohydrases (maltase and sucrase) was not elevated by higher diet carbohydrate content in both nestling and adult birds. Mass-specific activity of maltase changed less during ontogenetic development in zebra finch than in house sparrow. We conclude that the digestive physiology of zebra finch is adapted to process carbohydrate-rich food after hatching and is much less flexible than in house sparrow. We hypothesize that this difference might reflect the lack of a diet switch during ontogeny or result from high specialization to a narrow diet niche. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132280 Brzek, Pawel; Lessner, Krista M.; Caviedes Vidal, Enrique Juan Raul; Karasov, William H.; Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata); Company of Biologists; Journal of Experimental Biology; 212; 9; 12-2009; 1284-1293 0022-0949 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132280 |
identifier_str_mv |
Brzek, Pawel; Lessner, Krista M.; Caviedes Vidal, Enrique Juan Raul; Karasov, William H.; Low plasticity in digestive physiology constrains feeding ecology in diet specialist, Zebra finch (Taeniopygia guttata); Company of Biologists; Journal of Experimental Biology; 212; 9; 12-2009; 1284-1293 0022-0949 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.biologists.com/jeb/article/213/5/798/10081/Low-plasticity-in-digestive-physiology-constrains |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Company of Biologists |
publisher.none.fl_str_mv |
Company of Biologists |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980746429464576 |
score |
12.993085 |