Collapse, Plurals and Sets
- Autores
- Barrio, Eduardo Alejandro
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general.
Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COLLAPSE
ABSOLUTE GENERALITY
PARADOXES
PLURALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46515
Ver los metadatos del registro completo
id |
CONICETDig_a348ae3ea2b513c0ddaad71877a7c409 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46515 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Collapse, Plurals and SetsBarrio, Eduardo AlejandroCOLLAPSEABSOLUTE GENERALITYPARADOXESPLURALITIEShttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general.Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversidade Federal de Santa Catarina2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46515Barrio, Eduardo Alejandro; Collapse, Plurals and Sets; Universidade Federal de Santa Catarina; Principia; 18; 3; 12-2014; 419-4381808-17111414-4247CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2014v18n3p419info:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2014v18n3p419info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:50Zoai:ri.conicet.gov.ar:11336/46515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:50.959CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Collapse, Plurals and Sets |
title |
Collapse, Plurals and Sets |
spellingShingle |
Collapse, Plurals and Sets Barrio, Eduardo Alejandro COLLAPSE ABSOLUTE GENERALITY PARADOXES PLURALITIES |
title_short |
Collapse, Plurals and Sets |
title_full |
Collapse, Plurals and Sets |
title_fullStr |
Collapse, Plurals and Sets |
title_full_unstemmed |
Collapse, Plurals and Sets |
title_sort |
Collapse, Plurals and Sets |
dc.creator.none.fl_str_mv |
Barrio, Eduardo Alejandro |
author |
Barrio, Eduardo Alejandro |
author_facet |
Barrio, Eduardo Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
COLLAPSE ABSOLUTE GENERALITY PARADOXES PLURALITIES |
topic |
COLLAPSE ABSOLUTE GENERALITY PARADOXES PLURALITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general. Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46515 Barrio, Eduardo Alejandro; Collapse, Plurals and Sets; Universidade Federal de Santa Catarina; Principia; 18; 3; 12-2014; 419-438 1808-1711 1414-4247 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46515 |
identifier_str_mv |
Barrio, Eduardo Alejandro; Collapse, Plurals and Sets; Universidade Federal de Santa Catarina; Principia; 18; 3; 12-2014; 419-438 1808-1711 1414-4247 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5007/1808-1711.2014v18n3p419 info:eu-repo/semantics/altIdentifier/url/https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2014v18n3p419 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Catarina |
publisher.none.fl_str_mv |
Universidade Federal de Santa Catarina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613292304105472 |
score |
13.070432 |