Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide

Autores
Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; Alfano, Orlando Mario
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and  accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and  scaling-up, as well as for the optimization of other reactor configurations.
Fil: Marugan, Javier. Universidad Rey Juan Carlos; España
Fil: Van Grieken, Rafael. Universidad Rey Juan Carlos; España
Fil: Pablos, Cristina. Universidad Rey Juan Carlos; España
Fil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Materia
Photocatalysis
Kinetics
Disinfection
Titanium Dioxide
Escherichia Coli
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13364

id CONICETDig_a2f3826419c5fb7e2c277de97cd15b3f
oai_identifier_str oai:ri.conicet.gov.ar:11336/13364
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium DioxideMarugan, JavierVan Grieken, RafaelPablos, CristinaSatuf, María LucilaCassano, Alberto EnriqueAlfano, Orlando MarioPhotocatalysisKineticsDisinfectionTitanium DioxideEscherichia Colihttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and  accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and  scaling-up, as well as for the optimization of other reactor configurations.Fil: Marugan, Javier. Universidad Rey Juan Carlos; EspañaFil: Van Grieken, Rafael. Universidad Rey Juan Carlos; EspañaFil: Pablos, Cristina. Universidad Rey Juan Carlos; EspañaFil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaElsevier Science2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13364Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-4160926-3373enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2010.12.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926337310005436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:33Zoai:ri.conicet.gov.ar:11336/13364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:33.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
title Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
spellingShingle Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
Marugan, Javier
Photocatalysis
Kinetics
Disinfection
Titanium Dioxide
Escherichia Coli
title_short Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
title_full Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
title_fullStr Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
title_full_unstemmed Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
title_sort Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
dc.creator.none.fl_str_mv Marugan, Javier
Van Grieken, Rafael
Pablos, Cristina
Satuf, María Lucila
Cassano, Alberto Enrique
Alfano, Orlando Mario
author Marugan, Javier
author_facet Marugan, Javier
Van Grieken, Rafael
Pablos, Cristina
Satuf, María Lucila
Cassano, Alberto Enrique
Alfano, Orlando Mario
author_role author
author2 Van Grieken, Rafael
Pablos, Cristina
Satuf, María Lucila
Cassano, Alberto Enrique
Alfano, Orlando Mario
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Photocatalysis
Kinetics
Disinfection
Titanium Dioxide
Escherichia Coli
topic Photocatalysis
Kinetics
Disinfection
Titanium Dioxide
Escherichia Coli
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and  accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and  scaling-up, as well as for the optimization of other reactor configurations.
Fil: Marugan, Javier. Universidad Rey Juan Carlos; España
Fil: Van Grieken, Rafael. Universidad Rey Juan Carlos; España
Fil: Pablos, Cristina. Universidad Rey Juan Carlos; España
Fil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
description This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and  accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and  scaling-up, as well as for the optimization of other reactor configurations.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13364
Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-416
0926-3373
url http://hdl.handle.net/11336/13364
identifier_str_mv Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-416
0926-3373
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2010.12.012
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926337310005436
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269409553416192
score 13.13397