Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide
- Autores
- Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; Alfano, Orlando Mario
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and scaling-up, as well as for the optimization of other reactor configurations.
Fil: Marugan, Javier. Universidad Rey Juan Carlos; España
Fil: Van Grieken, Rafael. Universidad Rey Juan Carlos; España
Fil: Pablos, Cristina. Universidad Rey Juan Carlos; España
Fil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina - Materia
-
Photocatalysis
Kinetics
Disinfection
Titanium Dioxide
Escherichia Coli - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13364
Ver los metadatos del registro completo
id |
CONICETDig_a2f3826419c5fb7e2c277de97cd15b3f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13364 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium DioxideMarugan, JavierVan Grieken, RafaelPablos, CristinaSatuf, María LucilaCassano, Alberto EnriqueAlfano, Orlando MarioPhotocatalysisKineticsDisinfectionTitanium DioxideEscherichia Colihttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and scaling-up, as well as for the optimization of other reactor configurations.Fil: Marugan, Javier. Universidad Rey Juan Carlos; EspañaFil: Van Grieken, Rafael. Universidad Rey Juan Carlos; EspañaFil: Pablos, Cristina. Universidad Rey Juan Carlos; EspañaFil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaElsevier Science2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13364Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-4160926-3373enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2010.12.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926337310005436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:33Zoai:ri.conicet.gov.ar:11336/13364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:33.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
title |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
spellingShingle |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide Marugan, Javier Photocatalysis Kinetics Disinfection Titanium Dioxide Escherichia Coli |
title_short |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
title_full |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
title_fullStr |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
title_full_unstemmed |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
title_sort |
Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide |
dc.creator.none.fl_str_mv |
Marugan, Javier Van Grieken, Rafael Pablos, Cristina Satuf, María Lucila Cassano, Alberto Enrique Alfano, Orlando Mario |
author |
Marugan, Javier |
author_facet |
Marugan, Javier Van Grieken, Rafael Pablos, Cristina Satuf, María Lucila Cassano, Alberto Enrique Alfano, Orlando Mario |
author_role |
author |
author2 |
Van Grieken, Rafael Pablos, Cristina Satuf, María Lucila Cassano, Alberto Enrique Alfano, Orlando Mario |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Photocatalysis Kinetics Disinfection Titanium Dioxide Escherichia Coli |
topic |
Photocatalysis Kinetics Disinfection Titanium Dioxide Escherichia Coli |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and scaling-up, as well as for the optimization of other reactor configurations. Fil: Marugan, Javier. Universidad Rey Juan Carlos; España Fil: Van Grieken, Rafael. Universidad Rey Juan Carlos; España Fil: Pablos, Cristina. Universidad Rey Juan Carlos; España Fil: Satuf, María Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina Fil: Cassano, Alberto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina Fil: Alfano, Orlando Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina |
description |
This study is focused on the kinetic modelling of the photocatalytic inactivation of bacteria with suspended TiO2. A rigorous model based on a proposed reaction mechanism and accounting explicitly for the rate of photon absorption has been developed. The application of the general kinetic expression to limiting cases suggests that the interaction bacteria–catalyst can be considered to be weak. In contrast, a complex dependence on the radiation absorption rate must be taken into account, as very different radiation conditions may coexist inside the photoreactor, with high absorption rates in the region near to the radiation entrance window and much lower values on the opposite side of the photoreactor. The model has been successfully validated by experimental data, being able to reproduce the evolution of the concentration of viable bacteria in a wide range of values of TiO2 concentration, irradiation power and initial concentration of bacteria with a normalized root mean square logarithmic error of 5.3%. The values of the kinetic parameters are independent of the specific reactor setup or the operating conditions and therefore, the model can be used in a predictive way for photoreactor design and scaling-up, as well as for the optimization of other reactor configurations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13364 Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-416 0926-3373 |
url |
http://hdl.handle.net/11336/13364 |
identifier_str_mv |
Marugan, Javier; Van Grieken, Rafael; Pablos, Cristina; Satuf, María Lucila; Cassano, Alberto Enrique; et al.; Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the PhotocatalyticInactivation of Bacteria in Water using Suspended Titanium Dioxide; Elsevier Science; Applied Catalysis B: Environmental; 102; 3-4; 2-2011; 404-416 0926-3373 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2010.12.012 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926337310005436 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269409553416192 |
score |
13.13397 |