Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices

Autores
Phillips, Paul M.; Mei, Ningsi; Soulé, Ezequiel Rodolfo; Reven, Linda; Rey, Alejandro D.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A systematic analysis of defect textures in faceted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects are absorbed by the nanoparticle’s corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that, even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.
Fil: Phillips, Paul M.. McGill University; Canadá
Fil: Mei, Ningsi. McGill University; Canadá
Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Reven, Linda. McGill University; Canadá
Fil: Rey, Alejandro D.. McGill University; Canadá
Materia
Facetted Nanoparticles
Nematic Liquid Crystal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8193

id CONICETDig_a2d3eca8dfe35d5071a97bfec211e7cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/8193
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matricesPhillips, Paul M.Mei, NingsiSoulé, Ezequiel RodolfoReven, LindaRey, Alejandro D.Facetted NanoparticlesNematic Liquid Crystalhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2A systematic analysis of defect textures in faceted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects are absorbed by the nanoparticle’s corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that, even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.Fil: Phillips, Paul M.. McGill University; CanadáFil: Mei, Ningsi. McGill University; CanadáFil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Reven, Linda. McGill University; CanadáFil: Rey, Alejandro D.. McGill University; CanadáAmerican Chemical Society2011-09-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8193Phillips, Paul M.; Mei, Ningsi; Soulé, Ezequiel Rodolfo; Reven, Linda; Rey, Alejandro D.; Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices; American Chemical Society; Langmuir; 27; 21; 25-9-2011; 13335-133410743-7463enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/pdfplus/10.1021/la203226ginfo:eu-repo/semantics/altIdentifier/doi/10.1021/la203226ginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:06Zoai:ri.conicet.gov.ar:11336/8193instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:06.699CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
title Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
spellingShingle Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
Phillips, Paul M.
Facetted Nanoparticles
Nematic Liquid Crystal
title_short Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
title_full Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
title_fullStr Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
title_full_unstemmed Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
title_sort Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices
dc.creator.none.fl_str_mv Phillips, Paul M.
Mei, Ningsi
Soulé, Ezequiel Rodolfo
Reven, Linda
Rey, Alejandro D.
author Phillips, Paul M.
author_facet Phillips, Paul M.
Mei, Ningsi
Soulé, Ezequiel Rodolfo
Reven, Linda
Rey, Alejandro D.
author_role author
author2 Mei, Ningsi
Soulé, Ezequiel Rodolfo
Reven, Linda
Rey, Alejandro D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Facetted Nanoparticles
Nematic Liquid Crystal
topic Facetted Nanoparticles
Nematic Liquid Crystal
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A systematic analysis of defect textures in faceted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects are absorbed by the nanoparticle’s corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that, even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.
Fil: Phillips, Paul M.. McGill University; Canadá
Fil: Mei, Ningsi. McGill University; Canadá
Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Reven, Linda. McGill University; Canadá
Fil: Rey, Alejandro D.. McGill University; Canadá
description A systematic analysis of defect textures in faceted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects are absorbed by the nanoparticle’s corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that, even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8193
Phillips, Paul M.; Mei, Ningsi; Soulé, Ezequiel Rodolfo; Reven, Linda; Rey, Alejandro D.; Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices; American Chemical Society; Langmuir; 27; 21; 25-9-2011; 13335-13341
0743-7463
url http://hdl.handle.net/11336/8193
identifier_str_mv Phillips, Paul M.; Mei, Ningsi; Soulé, Ezequiel Rodolfo; Reven, Linda; Rey, Alejandro D.; Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices; American Chemical Society; Langmuir; 27; 21; 25-9-2011; 13335-13341
0743-7463
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/pdfplus/10.1021/la203226g
info:eu-repo/semantics/altIdentifier/doi/10.1021/la203226g
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979858710265856
score 12.993085