Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks
- Autores
- Simien, Catalina; Barberis, Lucas Miguel; Marin, Raul Hector; Kembro, Jackelyn Melissa
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Tri-axial accelerometers placed on an animal measure the 3-dimensional acceleration vector associated with body movements over time. When combined with machine learning and data processing techniques, such as neural networks, this methodology has the potential for classifyingthe recorded acceleration data into behavioral categories. Herein, we propose a system that implements the use of an accelerometer attached to male Japanese quail as a useful way for automatic detection of male reproductive behavior. Two different methods for attaching the accelerometer to the birds were also tested. Fifteen males and thirty females were divided into one of three experimental groups: 1) control without accelerometer attached, 2) using an accelerometer attached to a backpack (i.e. harness fitted by 2 elastic fabric bands around the wings´ base) or 3) using an accelerometer attached to a patch made of fabric glued to the back of the bird. All males were handled similarly and remained individually housed during a one-week period until testing. The test initiated when a male was introduced into the homebox of two female belonging to the sameexperimental group, during a 1-hour period. One camera above and one on the side of the box were used to record behaviors. From video-recording, a high resolution ethogram was performed defining all observable male behaviors at a 1/15s resolution during the first 10-min of testing (9000 data time points per bird). The number and duration of detected behavioral events were estimated. Accelerometer data was collected during the total 60-min of testing. General linearized models were used to assess differences between groups in the most frequently observed behavioral events, namely immobility, vigilance, shakes, exploration, walking, running, grabs, and mounts. In the vast majority of the variables evaluated no differences were observed between groups (P>0.05), including number and durations of mounts. In a second stage, the high-resolution behavioral time series registered from video-recordings were used first to train and then to validate a neural networks, to automatically detect within the accelerometer data the male reproductive events. Noteworthy, all displays of reproductive behavior during the 1-hour testing period were detected with this method. Thus, the proposed system is a first step towards automating the detection of reproductive behaviors relevant for studies where visual observations of video-recording are either not possible or impracticable. In particular, this methodology could be useful to assess male reproductive patterns over time within different social and environmental contexts.
Fil: Simien, Catalina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Ciencias y Tecnología de los Alimentos; Argentina
Fil: Barberis, Lucas Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Poultry Science Association 109th Annual Meeting
West Virginia
Estados Unidos
Poultry Science Association - Materia
-
JAPANESE QUAIL
SOCIAL BEHAVIOR
REPRODUCTION
ACCELEROMETRY
REMOTE DETECTION SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192157
Ver los metadatos del registro completo
id |
CONICETDig_a234287eeb2048d9456747682d2efd50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192157 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networksSimien, CatalinaBarberis, Lucas MiguelMarin, Raul HectorKembro, Jackelyn MelissaJAPANESE QUAILSOCIAL BEHAVIORREPRODUCTIONACCELEROMETRYREMOTE DETECTION SYSTEMShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Tri-axial accelerometers placed on an animal measure the 3-dimensional acceleration vector associated with body movements over time. When combined with machine learning and data processing techniques, such as neural networks, this methodology has the potential for classifyingthe recorded acceleration data into behavioral categories. Herein, we propose a system that implements the use of an accelerometer attached to male Japanese quail as a useful way for automatic detection of male reproductive behavior. Two different methods for attaching the accelerometer to the birds were also tested. Fifteen males and thirty females were divided into one of three experimental groups: 1) control without accelerometer attached, 2) using an accelerometer attached to a backpack (i.e. harness fitted by 2 elastic fabric bands around the wings´ base) or 3) using an accelerometer attached to a patch made of fabric glued to the back of the bird. All males were handled similarly and remained individually housed during a one-week period until testing. The test initiated when a male was introduced into the homebox of two female belonging to the sameexperimental group, during a 1-hour period. One camera above and one on the side of the box were used to record behaviors. From video-recording, a high resolution ethogram was performed defining all observable male behaviors at a 1/15s resolution during the first 10-min of testing (9000 data time points per bird). The number and duration of detected behavioral events were estimated. Accelerometer data was collected during the total 60-min of testing. General linearized models were used to assess differences between groups in the most frequently observed behavioral events, namely immobility, vigilance, shakes, exploration, walking, running, grabs, and mounts. In the vast majority of the variables evaluated no differences were observed between groups (P>0.05), including number and durations of mounts. In a second stage, the high-resolution behavioral time series registered from video-recordings were used first to train and then to validate a neural networks, to automatically detect within the accelerometer data the male reproductive events. Noteworthy, all displays of reproductive behavior during the 1-hour testing period were detected with this method. Thus, the proposed system is a first step towards automating the detection of reproductive behaviors relevant for studies where visual observations of video-recording are either not possible or impracticable. In particular, this methodology could be useful to assess male reproductive patterns over time within different social and environmental contexts.Fil: Simien, Catalina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Ciencias y Tecnología de los Alimentos; ArgentinaFil: Barberis, Lucas Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaPoultry Science Association 109th Annual MeetingWest VirginiaEstados UnidosPoultry Science AssociationElsevierTaylor, Robert L.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192157Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks; Poultry Science Association 109th Annual Meeting; West Virginia; Estados Unidos; 2020; 18-190032-57911525-3171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://poultryscience.org/files/galleries/2020-PSA-Abstracts.pdfinfo:eu-repo/semantics/altIdentifier/url/https://poultryscience.org/Meetings-Past-MeetingsInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:27Zoai:ri.conicet.gov.ar:11336/192157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:27.927CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
title |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
spellingShingle |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks Simien, Catalina JAPANESE QUAIL SOCIAL BEHAVIOR REPRODUCTION ACCELEROMETRY REMOTE DETECTION SYSTEMS |
title_short |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
title_full |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
title_fullStr |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
title_full_unstemmed |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
title_sort |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks |
dc.creator.none.fl_str_mv |
Simien, Catalina Barberis, Lucas Miguel Marin, Raul Hector Kembro, Jackelyn Melissa |
author |
Simien, Catalina |
author_facet |
Simien, Catalina Barberis, Lucas Miguel Marin, Raul Hector Kembro, Jackelyn Melissa |
author_role |
author |
author2 |
Barberis, Lucas Miguel Marin, Raul Hector Kembro, Jackelyn Melissa |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Taylor, Robert L. |
dc.subject.none.fl_str_mv |
JAPANESE QUAIL SOCIAL BEHAVIOR REPRODUCTION ACCELEROMETRY REMOTE DETECTION SYSTEMS |
topic |
JAPANESE QUAIL SOCIAL BEHAVIOR REPRODUCTION ACCELEROMETRY REMOTE DETECTION SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Tri-axial accelerometers placed on an animal measure the 3-dimensional acceleration vector associated with body movements over time. When combined with machine learning and data processing techniques, such as neural networks, this methodology has the potential for classifyingthe recorded acceleration data into behavioral categories. Herein, we propose a system that implements the use of an accelerometer attached to male Japanese quail as a useful way for automatic detection of male reproductive behavior. Two different methods for attaching the accelerometer to the birds were also tested. Fifteen males and thirty females were divided into one of three experimental groups: 1) control without accelerometer attached, 2) using an accelerometer attached to a backpack (i.e. harness fitted by 2 elastic fabric bands around the wings´ base) or 3) using an accelerometer attached to a patch made of fabric glued to the back of the bird. All males were handled similarly and remained individually housed during a one-week period until testing. The test initiated when a male was introduced into the homebox of two female belonging to the sameexperimental group, during a 1-hour period. One camera above and one on the side of the box were used to record behaviors. From video-recording, a high resolution ethogram was performed defining all observable male behaviors at a 1/15s resolution during the first 10-min of testing (9000 data time points per bird). The number and duration of detected behavioral events were estimated. Accelerometer data was collected during the total 60-min of testing. General linearized models were used to assess differences between groups in the most frequently observed behavioral events, namely immobility, vigilance, shakes, exploration, walking, running, grabs, and mounts. In the vast majority of the variables evaluated no differences were observed between groups (P>0.05), including number and durations of mounts. In a second stage, the high-resolution behavioral time series registered from video-recordings were used first to train and then to validate a neural networks, to automatically detect within the accelerometer data the male reproductive events. Noteworthy, all displays of reproductive behavior during the 1-hour testing period were detected with this method. Thus, the proposed system is a first step towards automating the detection of reproductive behaviors relevant for studies where visual observations of video-recording are either not possible or impracticable. In particular, this methodology could be useful to assess male reproductive patterns over time within different social and environmental contexts. Fil: Simien, Catalina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Ciencias y Tecnología de los Alimentos; Argentina Fil: Barberis, Lucas Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina Fil: Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina Poultry Science Association 109th Annual Meeting West Virginia Estados Unidos Poultry Science Association |
description |
Tri-axial accelerometers placed on an animal measure the 3-dimensional acceleration vector associated with body movements over time. When combined with machine learning and data processing techniques, such as neural networks, this methodology has the potential for classifyingthe recorded acceleration data into behavioral categories. Herein, we propose a system that implements the use of an accelerometer attached to male Japanese quail as a useful way for automatic detection of male reproductive behavior. Two different methods for attaching the accelerometer to the birds were also tested. Fifteen males and thirty females were divided into one of three experimental groups: 1) control without accelerometer attached, 2) using an accelerometer attached to a backpack (i.e. harness fitted by 2 elastic fabric bands around the wings´ base) or 3) using an accelerometer attached to a patch made of fabric glued to the back of the bird. All males were handled similarly and remained individually housed during a one-week period until testing. The test initiated when a male was introduced into the homebox of two female belonging to the sameexperimental group, during a 1-hour period. One camera above and one on the side of the box were used to record behaviors. From video-recording, a high resolution ethogram was performed defining all observable male behaviors at a 1/15s resolution during the first 10-min of testing (9000 data time points per bird). The number and duration of detected behavioral events were estimated. Accelerometer data was collected during the total 60-min of testing. General linearized models were used to assess differences between groups in the most frequently observed behavioral events, namely immobility, vigilance, shakes, exploration, walking, running, grabs, and mounts. In the vast majority of the variables evaluated no differences were observed between groups (P>0.05), including number and durations of mounts. In a second stage, the high-resolution behavioral time series registered from video-recordings were used first to train and then to validate a neural networks, to automatically detect within the accelerometer data the male reproductive events. Noteworthy, all displays of reproductive behavior during the 1-hour testing period were detected with this method. Thus, the proposed system is a first step towards automating the detection of reproductive behaviors relevant for studies where visual observations of video-recording are either not possible or impracticable. In particular, this methodology could be useful to assess male reproductive patterns over time within different social and environmental contexts. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192157 Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks; Poultry Science Association 109th Annual Meeting; West Virginia; Estados Unidos; 2020; 18-19 0032-5791 1525-3171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192157 |
identifier_str_mv |
Automatic detection of reproductive behavior in male Japanese quail (Coturnix japonica) using accelerometers and neural networks; Poultry Science Association 109th Annual Meeting; West Virginia; Estados Unidos; 2020; 18-19 0032-5791 1525-3171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://poultryscience.org/files/galleries/2020-PSA-Abstracts.pdf info:eu-repo/semantics/altIdentifier/url/https://poultryscience.org/Meetings-Past-Meetings |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613309393797120 |
score |
13.070432 |