Conformational pathways of simple six-membered rings
- Autores
- Stortz, Carlos Arturo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The conformational equilibria of cyclohexane (as well as its fluoro-, chloro-, methyl-, hydroxy-, and t-butyl derivatives), cyclohexanone, piperidine, tetrahydropyran (and its 2-hydroxy derivative) were studied by ab initio and DFT procedures. The transition states were calculated at HF/6-31G, B3LYP/6-31+G*, and B3LYP/6-311+G* levels, whereas the intrinsic reaction coordinates (IRCs) were evaluated at the B3LYP/6-31+G* level. The degree of puckering and energy data was nearly not basis set-dependent (using B3LYP) in most of the cases. However, DFT methods gave better agreement with experimental data than HF methods, as expected from electron correlation inclusion. Fluorocyclohexane and 2-hydroxytetrahydropyran showed the largest basis set-energy dependence. It was found that the conversion from chair to skew is direct in some cases, whereas in others it goes through the pseudorotational (skew/boat) pathway. The case of t-butylcyclohexane, with a skew form as stable as one of the chairs, is especially interesting. In this compound, as well as in cyclohexanone and 2-hydroxytetrahydropyran, large deviations from the known pseudorotation/inversion scheme are observed.
Fil: Stortz, Carlos Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina - Materia
-
Conformational Analysis
Cyclohexane
Density Functional Calculations
Six-Membered Rings
Transition States - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68782
Ver los metadatos del registro completo
id |
CONICETDig_a2218a87cb14d4650e0c1d2bd9a99311 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68782 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conformational pathways of simple six-membered ringsStortz, Carlos ArturoConformational AnalysisCyclohexaneDensity Functional CalculationsSix-Membered RingsTransition Stateshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The conformational equilibria of cyclohexane (as well as its fluoro-, chloro-, methyl-, hydroxy-, and t-butyl derivatives), cyclohexanone, piperidine, tetrahydropyran (and its 2-hydroxy derivative) were studied by ab initio and DFT procedures. The transition states were calculated at HF/6-31G, B3LYP/6-31+G*, and B3LYP/6-311+G* levels, whereas the intrinsic reaction coordinates (IRCs) were evaluated at the B3LYP/6-31+G* level. The degree of puckering and energy data was nearly not basis set-dependent (using B3LYP) in most of the cases. However, DFT methods gave better agreement with experimental data than HF methods, as expected from electron correlation inclusion. Fluorocyclohexane and 2-hydroxytetrahydropyran showed the largest basis set-energy dependence. It was found that the conversion from chair to skew is direct in some cases, whereas in others it goes through the pseudorotational (skew/boat) pathway. The case of t-butylcyclohexane, with a skew form as stable as one of the chairs, is especially interesting. In this compound, as well as in cyclohexanone and 2-hydroxytetrahydropyran, large deviations from the known pseudorotation/inversion scheme are observed.Fil: Stortz, Carlos Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaJohn Wiley & Sons Ltd2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68782Stortz, Carlos Arturo; Conformational pathways of simple six-membered rings; John Wiley & Sons Ltd; Journal Of Physical Organic Chemistry; 23; 12; 12-2010; 1173-11860894-3230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/poc.1689info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/poc.1689info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:50Zoai:ri.conicet.gov.ar:11336/68782instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:50.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conformational pathways of simple six-membered rings |
title |
Conformational pathways of simple six-membered rings |
spellingShingle |
Conformational pathways of simple six-membered rings Stortz, Carlos Arturo Conformational Analysis Cyclohexane Density Functional Calculations Six-Membered Rings Transition States |
title_short |
Conformational pathways of simple six-membered rings |
title_full |
Conformational pathways of simple six-membered rings |
title_fullStr |
Conformational pathways of simple six-membered rings |
title_full_unstemmed |
Conformational pathways of simple six-membered rings |
title_sort |
Conformational pathways of simple six-membered rings |
dc.creator.none.fl_str_mv |
Stortz, Carlos Arturo |
author |
Stortz, Carlos Arturo |
author_facet |
Stortz, Carlos Arturo |
author_role |
author |
dc.subject.none.fl_str_mv |
Conformational Analysis Cyclohexane Density Functional Calculations Six-Membered Rings Transition States |
topic |
Conformational Analysis Cyclohexane Density Functional Calculations Six-Membered Rings Transition States |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The conformational equilibria of cyclohexane (as well as its fluoro-, chloro-, methyl-, hydroxy-, and t-butyl derivatives), cyclohexanone, piperidine, tetrahydropyran (and its 2-hydroxy derivative) were studied by ab initio and DFT procedures. The transition states were calculated at HF/6-31G, B3LYP/6-31+G*, and B3LYP/6-311+G* levels, whereas the intrinsic reaction coordinates (IRCs) were evaluated at the B3LYP/6-31+G* level. The degree of puckering and energy data was nearly not basis set-dependent (using B3LYP) in most of the cases. However, DFT methods gave better agreement with experimental data than HF methods, as expected from electron correlation inclusion. Fluorocyclohexane and 2-hydroxytetrahydropyran showed the largest basis set-energy dependence. It was found that the conversion from chair to skew is direct in some cases, whereas in others it goes through the pseudorotational (skew/boat) pathway. The case of t-butylcyclohexane, with a skew form as stable as one of the chairs, is especially interesting. In this compound, as well as in cyclohexanone and 2-hydroxytetrahydropyran, large deviations from the known pseudorotation/inversion scheme are observed. Fil: Stortz, Carlos Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina |
description |
The conformational equilibria of cyclohexane (as well as its fluoro-, chloro-, methyl-, hydroxy-, and t-butyl derivatives), cyclohexanone, piperidine, tetrahydropyran (and its 2-hydroxy derivative) were studied by ab initio and DFT procedures. The transition states were calculated at HF/6-31G, B3LYP/6-31+G*, and B3LYP/6-311+G* levels, whereas the intrinsic reaction coordinates (IRCs) were evaluated at the B3LYP/6-31+G* level. The degree of puckering and energy data was nearly not basis set-dependent (using B3LYP) in most of the cases. However, DFT methods gave better agreement with experimental data than HF methods, as expected from electron correlation inclusion. Fluorocyclohexane and 2-hydroxytetrahydropyran showed the largest basis set-energy dependence. It was found that the conversion from chair to skew is direct in some cases, whereas in others it goes through the pseudorotational (skew/boat) pathway. The case of t-butylcyclohexane, with a skew form as stable as one of the chairs, is especially interesting. In this compound, as well as in cyclohexanone and 2-hydroxytetrahydropyran, large deviations from the known pseudorotation/inversion scheme are observed. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68782 Stortz, Carlos Arturo; Conformational pathways of simple six-membered rings; John Wiley & Sons Ltd; Journal Of Physical Organic Chemistry; 23; 12; 12-2010; 1173-1186 0894-3230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68782 |
identifier_str_mv |
Stortz, Carlos Arturo; Conformational pathways of simple six-membered rings; John Wiley & Sons Ltd; Journal Of Physical Organic Chemistry; 23; 12; 12-2010; 1173-1186 0894-3230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/poc.1689 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/poc.1689 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269119920996352 |
score |
13.13397 |