Roy-Steiner equations for γγ→ππ

Autores
Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.
Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados Unidos
Fil: Phillips, Daniel R.. Ohio University; Estados Unidos
Fil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Roy Equations
Dispersion Relations
Chiral Perturbation Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57160

id CONICETDig_a18be12c7de9e11e4411d45d92c723a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/57160
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Roy-Steiner equations for γγ→ππHoferichter, MartinPhillips, Daniel R.Schat, Carlos LuisRoy EquationsDispersion RelationsChiral Perturbation Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados UnidosFil: Phillips, Daniel R.. Ohio University; Estados UnidosFil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57160Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-281434-6044CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjc/s10052-011-1743-xinfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-011-1743-xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1106.4147v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:54Zoai:ri.conicet.gov.ar:11336/57160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:55.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Roy-Steiner equations for γγ→ππ
title Roy-Steiner equations for γγ→ππ
spellingShingle Roy-Steiner equations for γγ→ππ
Hoferichter, Martin
Roy Equations
Dispersion Relations
Chiral Perturbation Theory
title_short Roy-Steiner equations for γγ→ππ
title_full Roy-Steiner equations for γγ→ππ
title_fullStr Roy-Steiner equations for γγ→ππ
title_full_unstemmed Roy-Steiner equations for γγ→ππ
title_sort Roy-Steiner equations for γγ→ππ
dc.creator.none.fl_str_mv Hoferichter, Martin
Phillips, Daniel R.
Schat, Carlos Luis
author Hoferichter, Martin
author_facet Hoferichter, Martin
Phillips, Daniel R.
Schat, Carlos Luis
author_role author
author2 Phillips, Daniel R.
Schat, Carlos Luis
author2_role author
author
dc.subject.none.fl_str_mv Roy Equations
Dispersion Relations
Chiral Perturbation Theory
topic Roy Equations
Dispersion Relations
Chiral Perturbation Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.
Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados Unidos
Fil: Phillips, Daniel R.. Ohio University; Estados Unidos
Fil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57160
Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-28
1434-6044
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57160
identifier_str_mv Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-28
1434-6044
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjc/s10052-011-1743-x
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-011-1743-x
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1106.4147v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613083418329088
score 13.070432