Roy-Steiner equations for γγ→ππ
- Autores
- Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.
Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados Unidos
Fil: Phillips, Daniel R.. Ohio University; Estados Unidos
Fil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Roy Equations
Dispersion Relations
Chiral Perturbation Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57160
Ver los metadatos del registro completo
id |
CONICETDig_a18be12c7de9e11e4411d45d92c723a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57160 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Roy-Steiner equations for γγ→ππHoferichter, MartinPhillips, Daniel R.Schat, Carlos LuisRoy EquationsDispersion RelationsChiral Perturbation Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV.Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados UnidosFil: Phillips, Daniel R.. Ohio University; Estados UnidosFil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57160Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-281434-6044CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjc/s10052-011-1743-xinfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-011-1743-xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1106.4147v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:54Zoai:ri.conicet.gov.ar:11336/57160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:55.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Roy-Steiner equations for γγ→ππ |
title |
Roy-Steiner equations for γγ→ππ |
spellingShingle |
Roy-Steiner equations for γγ→ππ Hoferichter, Martin Roy Equations Dispersion Relations Chiral Perturbation Theory |
title_short |
Roy-Steiner equations for γγ→ππ |
title_full |
Roy-Steiner equations for γγ→ππ |
title_fullStr |
Roy-Steiner equations for γγ→ππ |
title_full_unstemmed |
Roy-Steiner equations for γγ→ππ |
title_sort |
Roy-Steiner equations for γγ→ππ |
dc.creator.none.fl_str_mv |
Hoferichter, Martin Phillips, Daniel R. Schat, Carlos Luis |
author |
Hoferichter, Martin |
author_facet |
Hoferichter, Martin Phillips, Daniel R. Schat, Carlos Luis |
author_role |
author |
author2 |
Phillips, Daniel R. Schat, Carlos Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Roy Equations Dispersion Relations Chiral Perturbation Theory |
topic |
Roy Equations Dispersion Relations Chiral Perturbation Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV. Fil: Hoferichter, Martin. Universitat Bonn; Alemania. Ohio University; Estados Unidos Fil: Phillips, Daniel R.. Ohio University; Estados Unidos Fil: Schat, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Starting from hyperbolic dispersion relations, we derive a system of Roy-Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtracted versions of the equations, and identify the subtraction constants with dipole and quadrupole pion polarizabilities. Based on the assumption of Mandelstam analyticity, we determine the kinematic range in which the equations are valid. As an application, we consider the resolution of the γγ→ππ partial waves by a Muskhelishvili-Omnès representation with finite matching point. We find a sum rule for the isospin-two S-wave, which, together with chiral constraints, produces an improved prediction for the charged-pion quadrupole polarizability (α2-β2)π± = (15.3±3.7)× 10-4 fm5. We investigate the prediction of our dispersion relations for the two-photon coupling of the σ-resonance Γσγγ. The twice-subtracted version predicts a correlation between this width and the isospin-zero pion polarizabilities, which is largely independent of the high-energy input used in the equations. Using this correlation, the chiral perturbation theory results for pion polarizabilities, and our new sum rule, we find Γσγγ=(1.7±0.4) keV. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57160 Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-28 1434-6044 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57160 |
identifier_str_mv |
Hoferichter, Martin; Phillips, Daniel R.; Schat, Carlos Luis; Roy-Steiner equations for γγ→ππ; Springer; European Physical Journal C: Particles and Fields; 71; 9; 9-2011; 1-28 1434-6044 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjc/s10052-011-1743-x info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-011-1743-x info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1106.4147v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613083418329088 |
score |
13.070432 |