Eigenmodes of index-modulated layers with lateral PMLs

Autores
Skigin, Diana Carina
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Maxwell equations are solved in a layer comprising a finite number of homogeneous isotropic dielectric regions ended by anisotropic perfectly matched layers (PMLs). The boundary-value problem is solved and the dispersion relation inside the PML is derived. The general expression of the eigenvalues equation for an arbitrary number of regions in each layer is obtained, and both polarization modes are considered. The modal functions of a single layer ended by PMLs are found, and their orthogonality relation is derived. The present method is useful to simulate scattering problems from dielectric objects as well as propagation in planar slab waveguides. Its potential to deal with more complex problems such as the scattering from an object with arbitrary cross section in open space using the multilayer modal method is briefly discussed. © 2005 Elsevier GmbH. All rights reserved.
Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Eigenmodes
Modal Method
Perfectly Matched Layers
Scattering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61187

id CONICETDig_a020910046b79ea8bb2cdbadb29d4d13
oai_identifier_str oai:ri.conicet.gov.ar:11336/61187
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Eigenmodes of index-modulated layers with lateral PMLsSkigin, Diana CarinaEigenmodesModal MethodPerfectly Matched LayersScatteringhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Maxwell equations are solved in a layer comprising a finite number of homogeneous isotropic dielectric regions ended by anisotropic perfectly matched layers (PMLs). The boundary-value problem is solved and the dispersion relation inside the PML is derived. The general expression of the eigenvalues equation for an arbitrary number of regions in each layer is obtained, and both polarization modes are considered. The modal functions of a single layer ended by PMLs are found, and their orthogonality relation is derived. The present method is useful to simulate scattering problems from dielectric objects as well as propagation in planar slab waveguides. Its potential to deal with more complex problems such as the scattering from an object with arbitrary cross section in open space using the multilayer modal method is briefly discussed. © 2005 Elsevier GmbH. All rights reserved.Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Gmbh2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61187Skigin, Diana Carina; Eigenmodes of index-modulated layers with lateral PMLs; Elsevier Gmbh; Optik; 116; 7; 12-2005; 343-3500030-4026CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijleo.2005.02.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:18Zoai:ri.conicet.gov.ar:11336/61187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:19.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Eigenmodes of index-modulated layers with lateral PMLs
title Eigenmodes of index-modulated layers with lateral PMLs
spellingShingle Eigenmodes of index-modulated layers with lateral PMLs
Skigin, Diana Carina
Eigenmodes
Modal Method
Perfectly Matched Layers
Scattering
title_short Eigenmodes of index-modulated layers with lateral PMLs
title_full Eigenmodes of index-modulated layers with lateral PMLs
title_fullStr Eigenmodes of index-modulated layers with lateral PMLs
title_full_unstemmed Eigenmodes of index-modulated layers with lateral PMLs
title_sort Eigenmodes of index-modulated layers with lateral PMLs
dc.creator.none.fl_str_mv Skigin, Diana Carina
author Skigin, Diana Carina
author_facet Skigin, Diana Carina
author_role author
dc.subject.none.fl_str_mv Eigenmodes
Modal Method
Perfectly Matched Layers
Scattering
topic Eigenmodes
Modal Method
Perfectly Matched Layers
Scattering
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Maxwell equations are solved in a layer comprising a finite number of homogeneous isotropic dielectric regions ended by anisotropic perfectly matched layers (PMLs). The boundary-value problem is solved and the dispersion relation inside the PML is derived. The general expression of the eigenvalues equation for an arbitrary number of regions in each layer is obtained, and both polarization modes are considered. The modal functions of a single layer ended by PMLs are found, and their orthogonality relation is derived. The present method is useful to simulate scattering problems from dielectric objects as well as propagation in planar slab waveguides. Its potential to deal with more complex problems such as the scattering from an object with arbitrary cross section in open space using the multilayer modal method is briefly discussed. © 2005 Elsevier GmbH. All rights reserved.
Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Maxwell equations are solved in a layer comprising a finite number of homogeneous isotropic dielectric regions ended by anisotropic perfectly matched layers (PMLs). The boundary-value problem is solved and the dispersion relation inside the PML is derived. The general expression of the eigenvalues equation for an arbitrary number of regions in each layer is obtained, and both polarization modes are considered. The modal functions of a single layer ended by PMLs are found, and their orthogonality relation is derived. The present method is useful to simulate scattering problems from dielectric objects as well as propagation in planar slab waveguides. Its potential to deal with more complex problems such as the scattering from an object with arbitrary cross section in open space using the multilayer modal method is briefly discussed. © 2005 Elsevier GmbH. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61187
Skigin, Diana Carina; Eigenmodes of index-modulated layers with lateral PMLs; Elsevier Gmbh; Optik; 116; 7; 12-2005; 343-350
0030-4026
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61187
identifier_str_mv Skigin, Diana Carina; Eigenmodes of index-modulated layers with lateral PMLs; Elsevier Gmbh; Optik; 116; 7; 12-2005; 343-350
0030-4026
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijleo.2005.02.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Gmbh
publisher.none.fl_str_mv Elsevier Gmbh
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614455811375104
score 13.070432