Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
- Autores
- David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Mahrt, Fabian; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.
Fil: David, Robert O.. Institute for Atmospheric and Climate Science; Suiza
Fil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; Suiza
Fil: Fahrni, Jonas. Zurich University of Applied Sciences; Suiza
Fil: Qiu, Yuqing. University of Utah; Estados Unidos
Fil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; Suiza
Fil: Brühwiler, Dominik. University of Applied Sciences; Suiza
Fil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; Suiza
Fil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; Suiza - Materia
-
CIRRUS
CLOUDS
DEPOSITION NUCLEATION
ICE NUCLEATION
PORE CONDENSATION AND FREEZING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123701
Ver los metadatos del registro completo
id |
CONICETDig_a0084532938a54f96e736fa452ce45e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particlesDavid, Robert O.Marcolli, ClaudiaFahrni, JonasQiu, YuqingPérez Sirkin, Yamila AnahíMolinero, ValeriaMahrt, FabianBrühwiler, DominikLohmann, UlrikeKanji, Zamin A.CIRRUSCLOUDSDEPOSITION NUCLEATIONICE NUCLEATIONPORE CONDENSATION AND FREEZINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.Fil: David, Robert O.. Institute for Atmospheric and Climate Science; SuizaFil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; SuizaFil: Fahrni, Jonas. Zurich University of Applied Sciences; SuizaFil: Qiu, Yuqing. University of Utah; Estados UnidosFil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; SuizaFil: Brühwiler, Dominik. University of Applied Sciences; SuizaFil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; SuizaFil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; SuizaNational Academy of Sciences2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123701David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-81890027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/pnas/116/17/8184.full.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1813647116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:46Zoai:ri.conicet.gov.ar:11336/123701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:46.428CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
title |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
spellingShingle |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles David, Robert O. CIRRUS CLOUDS DEPOSITION NUCLEATION ICE NUCLEATION PORE CONDENSATION AND FREEZING |
title_short |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
title_full |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
title_fullStr |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
title_full_unstemmed |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
title_sort |
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles |
dc.creator.none.fl_str_mv |
David, Robert O. Marcolli, Claudia Fahrni, Jonas Qiu, Yuqing Pérez Sirkin, Yamila Anahí Molinero, Valeria Mahrt, Fabian Brühwiler, Dominik Lohmann, Ulrike Kanji, Zamin A. |
author |
David, Robert O. |
author_facet |
David, Robert O. Marcolli, Claudia Fahrni, Jonas Qiu, Yuqing Pérez Sirkin, Yamila Anahí Molinero, Valeria Mahrt, Fabian Brühwiler, Dominik Lohmann, Ulrike Kanji, Zamin A. |
author_role |
author |
author2 |
Marcolli, Claudia Fahrni, Jonas Qiu, Yuqing Pérez Sirkin, Yamila Anahí Molinero, Valeria Mahrt, Fabian Brühwiler, Dominik Lohmann, Ulrike Kanji, Zamin A. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
CIRRUS CLOUDS DEPOSITION NUCLEATION ICE NUCLEATION PORE CONDENSATION AND FREEZING |
topic |
CIRRUS CLOUDS DEPOSITION NUCLEATION ICE NUCLEATION PORE CONDENSATION AND FREEZING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation. Fil: David, Robert O.. Institute for Atmospheric and Climate Science; Suiza Fil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; Suiza Fil: Fahrni, Jonas. Zurich University of Applied Sciences; Suiza Fil: Qiu, Yuqing. University of Utah; Estados Unidos Fil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; Suiza Fil: Brühwiler, Dominik. University of Applied Sciences; Suiza Fil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; Suiza Fil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; Suiza |
description |
Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123701 David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-8189 0027-8424 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123701 |
identifier_str_mv |
David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-8189 0027-8424 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/pnas/116/17/8184.full.pdf info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1813647116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269973396848640 |
score |
13.13397 |