Pore condensation and freezing is responsible for ice formation below water saturation for porous particles

Autores
David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Mahrt, Fabian; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.
Fil: David, Robert O.. Institute for Atmospheric and Climate Science; Suiza
Fil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; Suiza
Fil: Fahrni, Jonas. Zurich University of Applied Sciences; Suiza
Fil: Qiu, Yuqing. University of Utah; Estados Unidos
Fil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; Suiza
Fil: Brühwiler, Dominik. University of Applied Sciences; Suiza
Fil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; Suiza
Fil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; Suiza
Materia
CIRRUS
CLOUDS
DEPOSITION NUCLEATION
ICE NUCLEATION
PORE CONDENSATION AND FREEZING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/123701

id CONICETDig_a0084532938a54f96e736fa452ce45e8
oai_identifier_str oai:ri.conicet.gov.ar:11336/123701
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pore condensation and freezing is responsible for ice formation below water saturation for porous particlesDavid, Robert O.Marcolli, ClaudiaFahrni, JonasQiu, YuqingPérez Sirkin, Yamila AnahíMolinero, ValeriaMahrt, FabianBrühwiler, DominikLohmann, UlrikeKanji, Zamin A.CIRRUSCLOUDSDEPOSITION NUCLEATIONICE NUCLEATIONPORE CONDENSATION AND FREEZINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.Fil: David, Robert O.. Institute for Atmospheric and Climate Science; SuizaFil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; SuizaFil: Fahrni, Jonas. Zurich University of Applied Sciences; SuizaFil: Qiu, Yuqing. University of Utah; Estados UnidosFil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; SuizaFil: Brühwiler, Dominik. University of Applied Sciences; SuizaFil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; SuizaFil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; SuizaNational Academy of Sciences2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123701David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-81890027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/pnas/116/17/8184.full.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1813647116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:46Zoai:ri.conicet.gov.ar:11336/123701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:46.428CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
title Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
spellingShingle Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
David, Robert O.
CIRRUS
CLOUDS
DEPOSITION NUCLEATION
ICE NUCLEATION
PORE CONDENSATION AND FREEZING
title_short Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
title_full Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
title_fullStr Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
title_full_unstemmed Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
title_sort Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
dc.creator.none.fl_str_mv David, Robert O.
Marcolli, Claudia
Fahrni, Jonas
Qiu, Yuqing
Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Mahrt, Fabian
Brühwiler, Dominik
Lohmann, Ulrike
Kanji, Zamin A.
author David, Robert O.
author_facet David, Robert O.
Marcolli, Claudia
Fahrni, Jonas
Qiu, Yuqing
Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Mahrt, Fabian
Brühwiler, Dominik
Lohmann, Ulrike
Kanji, Zamin A.
author_role author
author2 Marcolli, Claudia
Fahrni, Jonas
Qiu, Yuqing
Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Mahrt, Fabian
Brühwiler, Dominik
Lohmann, Ulrike
Kanji, Zamin A.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CIRRUS
CLOUDS
DEPOSITION NUCLEATION
ICE NUCLEATION
PORE CONDENSATION AND FREEZING
topic CIRRUS
CLOUDS
DEPOSITION NUCLEATION
ICE NUCLEATION
PORE CONDENSATION AND FREEZING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.
Fil: David, Robert O.. Institute for Atmospheric and Climate Science; Suiza
Fil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; Suiza
Fil: Fahrni, Jonas. Zurich University of Applied Sciences; Suiza
Fil: Qiu, Yuqing. University of Utah; Estados Unidos
Fil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; Suiza
Fil: Brühwiler, Dominik. University of Applied Sciences; Suiza
Fil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; Suiza
Fil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; Suiza
description Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/123701
David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-8189
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/123701
identifier_str_mv David, Robert O.; Marcolli, Claudia; Fahrni, Jonas; Qiu, Yuqing; Pérez Sirkin, Yamila Anahí; et al.; Pore condensation and freezing is responsible for ice formation below water saturation for porous particles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 17; 4-2019; 8184-8189
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/pnas/116/17/8184.full.pdf
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1813647116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269973396848640
score 13.13397