Noisy multistate voter model for flocking in finite dimensions
- Autores
- Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina - Materia
-
Irreversible Phase Transitions
Self-propelled particles
Social systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173773
Ver los metadatos del registro completo
| id |
CONICETDig_9fdbf5687b2813d72189e8952e248270 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173773 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Noisy multistate voter model for flocking in finite dimensionsLoscar, Ernesto SelimBaglietto, GabrielVazquez, FedericoIrreversible Phase TransitionsSelf-propelled particlesSocial systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaAmerican Physical Society2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173773Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-231539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.104.034111info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.034111info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2102.02633info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:49Zoai:ri.conicet.gov.ar:11336/173773instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:49.847CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Noisy multistate voter model for flocking in finite dimensions |
| title |
Noisy multistate voter model for flocking in finite dimensions |
| spellingShingle |
Noisy multistate voter model for flocking in finite dimensions Loscar, Ernesto Selim Irreversible Phase Transitions Self-propelled particles Social systems |
| title_short |
Noisy multistate voter model for flocking in finite dimensions |
| title_full |
Noisy multistate voter model for flocking in finite dimensions |
| title_fullStr |
Noisy multistate voter model for flocking in finite dimensions |
| title_full_unstemmed |
Noisy multistate voter model for flocking in finite dimensions |
| title_sort |
Noisy multistate voter model for flocking in finite dimensions |
| dc.creator.none.fl_str_mv |
Loscar, Ernesto Selim Baglietto, Gabriel Vazquez, Federico |
| author |
Loscar, Ernesto Selim |
| author_facet |
Loscar, Ernesto Selim Baglietto, Gabriel Vazquez, Federico |
| author_role |
author |
| author2 |
Baglietto, Gabriel Vazquez, Federico |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Irreversible Phase Transitions Self-propelled particles Social systems |
| topic |
Irreversible Phase Transitions Self-propelled particles Social systems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions. Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina |
| description |
We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173773 Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23 1539-3755 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/173773 |
| identifier_str_mv |
Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23 1539-3755 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.104.034111 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.034111 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2102.02633 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598089361784832 |
| score |
12.976206 |