Noisy multistate voter model for flocking in finite dimensions

Autores
Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Materia
Irreversible Phase Transitions
Self-propelled particles
Social systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/173773

id CONICETDig_9fdbf5687b2813d72189e8952e248270
oai_identifier_str oai:ri.conicet.gov.ar:11336/173773
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Noisy multistate voter model for flocking in finite dimensionsLoscar, Ernesto SelimBaglietto, GabrielVazquez, FedericoIrreversible Phase TransitionsSelf-propelled particlesSocial systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaAmerican Physical Society2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173773Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-231539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.104.034111info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.034111info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2102.02633info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:20Zoai:ri.conicet.gov.ar:11336/173773instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:20.608CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Noisy multistate voter model for flocking in finite dimensions
title Noisy multistate voter model for flocking in finite dimensions
spellingShingle Noisy multistate voter model for flocking in finite dimensions
Loscar, Ernesto Selim
Irreversible Phase Transitions
Self-propelled particles
Social systems
title_short Noisy multistate voter model for flocking in finite dimensions
title_full Noisy multistate voter model for flocking in finite dimensions
title_fullStr Noisy multistate voter model for flocking in finite dimensions
title_full_unstemmed Noisy multistate voter model for flocking in finite dimensions
title_sort Noisy multistate voter model for flocking in finite dimensions
dc.creator.none.fl_str_mv Loscar, Ernesto Selim
Baglietto, Gabriel
Vazquez, Federico
author Loscar, Ernesto Selim
author_facet Loscar, Ernesto Selim
Baglietto, Gabriel
Vazquez, Federico
author_role author
author2 Baglietto, Gabriel
Vazquez, Federico
author2_role author
author
dc.subject.none.fl_str_mv Irreversible Phase Transitions
Self-propelled particles
Social systems
topic Irreversible Phase Transitions
Self-propelled particles
Social systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
Fil: Loscar, Ernesto Selim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
description We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/173773
Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/173773
identifier_str_mv Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.104.034111
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.034111
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2102.02633
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614049214496768
score 13.070432