A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery

Autores
Betancur, Stefanía; Olmos Carreno, Carol Maritza; Perez, Maximiliano Sebastian; Lerner, Betiana; Franco, Camilo A.; Riazi, Masoud; Gallego, Jaime; Carrasco Marín, Francisco; Cortés, Farid B.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main objective of this work is to evaluate the effect of the simultaneous use of a surfactant mixture and magnetic iron core-carbon shell nanoparticles on oil recovery via a microfluidic study based on the rock-on-a-chip technology. The surfactant solution used for all experiments was prepared based on a field formulation and consisted of a mixture of a hydrophilic and a lipophilic surfactant. Magnetic iron core-carbon shell nanoparticles with a mean particle size of 60 nm and a surface area of 123 m2 g−1 were employed. The displacement experiments consisted of waterflooding, surfactant flooding and nanoparticle-surfactant flooding and were performed using PDMS (polydimethylsiloxane)-glass microdevices type random network. The characteristics and design of the microfluidic device allowed to emulate a mixed wettability of a porous medium. Then, the oil was displaced by injecting the solution at a constant injection rate, until steady-state conditions were obtained. Furthermore, the effect of three injection rates corresponding to 0.1 ft day−1, 1 ft day−1, and 10 ft day−1 was investigated. The increase in the injection rate favored the oil recovery percentage. In addition, for all injection rates, the oil recovery decreased in the following order: nanoparticle-surfactant flooding > surfactant flooding > waterflooding. The nanoparticle-surfactant system at the injection rate of 1.9 μL min−1 presented the highest oil recovery (i.e., 84%). Likewise, nanoparticle-surfactant flooding showed a more stable displacement front and consequently, the highest capillary number among the injection fluids. Oil recovery by waterflooding was the lowest among the evaluated systems due to the viscous fingering phenomena under different injection rates. In addition, it can be observed that for all injection rates, the presence of the surfactant mixture and nanoparticles reduce the viscous fingering effect. The results can be used to visually and quantitatively analyze the role of the simultaneous use of nanoparticles with surfactants in enhanced oil recovery processes.
Fil: Betancur, Stefanía. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad de Granada; España
Fil: Olmos Carreno, Carol Maritza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Franco, Camilo A.. Universidad Nacional de Colombia. Sede Medellin; Colombia
Fil: Riazi, Masoud. Shiraz University; Irán
Fil: Gallego, Jaime. Universidad Nacional de Colombia. Sede Medellin; Colombia. Universidad de Antioquia; Colombia
Fil: Carrasco Marín, Francisco. Universidad de Granada; España
Fil: Cortés, Farid B.. Universidad Nacional de Colombia. Sede Medellin; Colombia
Materia
MICROFLUIDIC
ENHANCED OIL RECOVERY
NANOPARTICLES
SURFACTANT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151524

id CONICETDig_9fc632763d32462627706f8f19107702
oai_identifier_str oai:ri.conicet.gov.ar:11336/151524
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recoveryBetancur, StefaníaOlmos Carreno, Carol MaritzaPerez, Maximiliano SebastianLerner, BetianaFranco, Camilo A.Riazi, MasoudGallego, JaimeCarrasco Marín, FranciscoCortés, Farid B.MICROFLUIDICENHANCED OIL RECOVERYNANOPARTICLESSURFACTANThttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The main objective of this work is to evaluate the effect of the simultaneous use of a surfactant mixture and magnetic iron core-carbon shell nanoparticles on oil recovery via a microfluidic study based on the rock-on-a-chip technology. The surfactant solution used for all experiments was prepared based on a field formulation and consisted of a mixture of a hydrophilic and a lipophilic surfactant. Magnetic iron core-carbon shell nanoparticles with a mean particle size of 60 nm and a surface area of 123 m2 g−1 were employed. The displacement experiments consisted of waterflooding, surfactant flooding and nanoparticle-surfactant flooding and were performed using PDMS (polydimethylsiloxane)-glass microdevices type random network. The characteristics and design of the microfluidic device allowed to emulate a mixed wettability of a porous medium. Then, the oil was displaced by injecting the solution at a constant injection rate, until steady-state conditions were obtained. Furthermore, the effect of three injection rates corresponding to 0.1 ft day−1, 1 ft day−1, and 10 ft day−1 was investigated. The increase in the injection rate favored the oil recovery percentage. In addition, for all injection rates, the oil recovery decreased in the following order: nanoparticle-surfactant flooding > surfactant flooding > waterflooding. The nanoparticle-surfactant system at the injection rate of 1.9 μL min−1 presented the highest oil recovery (i.e., 84%). Likewise, nanoparticle-surfactant flooding showed a more stable displacement front and consequently, the highest capillary number among the injection fluids. Oil recovery by waterflooding was the lowest among the evaluated systems due to the viscous fingering phenomena under different injection rates. In addition, it can be observed that for all injection rates, the presence of the surfactant mixture and nanoparticles reduce the viscous fingering effect. The results can be used to visually and quantitatively analyze the role of the simultaneous use of nanoparticles with surfactants in enhanced oil recovery processes.Fil: Betancur, Stefanía. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad de Granada; EspañaFil: Olmos Carreno, Carol Maritza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Franco, Camilo A.. Universidad Nacional de Colombia. Sede Medellin; ColombiaFil: Riazi, Masoud. Shiraz University; IránFil: Gallego, Jaime. Universidad Nacional de Colombia. Sede Medellin; Colombia. Universidad de Antioquia; ColombiaFil: Carrasco Marín, Francisco. Universidad de Granada; EspañaFil: Cortés, Farid B.. Universidad Nacional de Colombia. Sede Medellin; ColombiaElsevier Science2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151524Betancur, Stefanía; Olmos Carreno, Carol Maritza; Perez, Maximiliano Sebastian; Lerner, Betiana; Franco, Camilo A.; et al.; A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery; Elsevier Science; Journal of Petroleum Science and Engineering; 184; 106589; 10-2019; 1-450920-4105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.petrol.2019.106589info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0920410519310101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:49Zoai:ri.conicet.gov.ar:11336/151524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:49.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
title A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
spellingShingle A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
Betancur, Stefanía
MICROFLUIDIC
ENHANCED OIL RECOVERY
NANOPARTICLES
SURFACTANT
title_short A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
title_full A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
title_fullStr A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
title_full_unstemmed A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
title_sort A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery
dc.creator.none.fl_str_mv Betancur, Stefanía
Olmos Carreno, Carol Maritza
Perez, Maximiliano Sebastian
Lerner, Betiana
Franco, Camilo A.
Riazi, Masoud
Gallego, Jaime
Carrasco Marín, Francisco
Cortés, Farid B.
author Betancur, Stefanía
author_facet Betancur, Stefanía
Olmos Carreno, Carol Maritza
Perez, Maximiliano Sebastian
Lerner, Betiana
Franco, Camilo A.
Riazi, Masoud
Gallego, Jaime
Carrasco Marín, Francisco
Cortés, Farid B.
author_role author
author2 Olmos Carreno, Carol Maritza
Perez, Maximiliano Sebastian
Lerner, Betiana
Franco, Camilo A.
Riazi, Masoud
Gallego, Jaime
Carrasco Marín, Francisco
Cortés, Farid B.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MICROFLUIDIC
ENHANCED OIL RECOVERY
NANOPARTICLES
SURFACTANT
topic MICROFLUIDIC
ENHANCED OIL RECOVERY
NANOPARTICLES
SURFACTANT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The main objective of this work is to evaluate the effect of the simultaneous use of a surfactant mixture and magnetic iron core-carbon shell nanoparticles on oil recovery via a microfluidic study based on the rock-on-a-chip technology. The surfactant solution used for all experiments was prepared based on a field formulation and consisted of a mixture of a hydrophilic and a lipophilic surfactant. Magnetic iron core-carbon shell nanoparticles with a mean particle size of 60 nm and a surface area of 123 m2 g−1 were employed. The displacement experiments consisted of waterflooding, surfactant flooding and nanoparticle-surfactant flooding and were performed using PDMS (polydimethylsiloxane)-glass microdevices type random network. The characteristics and design of the microfluidic device allowed to emulate a mixed wettability of a porous medium. Then, the oil was displaced by injecting the solution at a constant injection rate, until steady-state conditions were obtained. Furthermore, the effect of three injection rates corresponding to 0.1 ft day−1, 1 ft day−1, and 10 ft day−1 was investigated. The increase in the injection rate favored the oil recovery percentage. In addition, for all injection rates, the oil recovery decreased in the following order: nanoparticle-surfactant flooding > surfactant flooding > waterflooding. The nanoparticle-surfactant system at the injection rate of 1.9 μL min−1 presented the highest oil recovery (i.e., 84%). Likewise, nanoparticle-surfactant flooding showed a more stable displacement front and consequently, the highest capillary number among the injection fluids. Oil recovery by waterflooding was the lowest among the evaluated systems due to the viscous fingering phenomena under different injection rates. In addition, it can be observed that for all injection rates, the presence of the surfactant mixture and nanoparticles reduce the viscous fingering effect. The results can be used to visually and quantitatively analyze the role of the simultaneous use of nanoparticles with surfactants in enhanced oil recovery processes.
Fil: Betancur, Stefanía. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad de Granada; España
Fil: Olmos Carreno, Carol Maritza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Franco, Camilo A.. Universidad Nacional de Colombia. Sede Medellin; Colombia
Fil: Riazi, Masoud. Shiraz University; Irán
Fil: Gallego, Jaime. Universidad Nacional de Colombia. Sede Medellin; Colombia. Universidad de Antioquia; Colombia
Fil: Carrasco Marín, Francisco. Universidad de Granada; España
Fil: Cortés, Farid B.. Universidad Nacional de Colombia. Sede Medellin; Colombia
description The main objective of this work is to evaluate the effect of the simultaneous use of a surfactant mixture and magnetic iron core-carbon shell nanoparticles on oil recovery via a microfluidic study based on the rock-on-a-chip technology. The surfactant solution used for all experiments was prepared based on a field formulation and consisted of a mixture of a hydrophilic and a lipophilic surfactant. Magnetic iron core-carbon shell nanoparticles with a mean particle size of 60 nm and a surface area of 123 m2 g−1 were employed. The displacement experiments consisted of waterflooding, surfactant flooding and nanoparticle-surfactant flooding and were performed using PDMS (polydimethylsiloxane)-glass microdevices type random network. The characteristics and design of the microfluidic device allowed to emulate a mixed wettability of a porous medium. Then, the oil was displaced by injecting the solution at a constant injection rate, until steady-state conditions were obtained. Furthermore, the effect of three injection rates corresponding to 0.1 ft day−1, 1 ft day−1, and 10 ft day−1 was investigated. The increase in the injection rate favored the oil recovery percentage. In addition, for all injection rates, the oil recovery decreased in the following order: nanoparticle-surfactant flooding > surfactant flooding > waterflooding. The nanoparticle-surfactant system at the injection rate of 1.9 μL min−1 presented the highest oil recovery (i.e., 84%). Likewise, nanoparticle-surfactant flooding showed a more stable displacement front and consequently, the highest capillary number among the injection fluids. Oil recovery by waterflooding was the lowest among the evaluated systems due to the viscous fingering phenomena under different injection rates. In addition, it can be observed that for all injection rates, the presence of the surfactant mixture and nanoparticles reduce the viscous fingering effect. The results can be used to visually and quantitatively analyze the role of the simultaneous use of nanoparticles with surfactants in enhanced oil recovery processes.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151524
Betancur, Stefanía; Olmos Carreno, Carol Maritza; Perez, Maximiliano Sebastian; Lerner, Betiana; Franco, Camilo A.; et al.; A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery; Elsevier Science; Journal of Petroleum Science and Engineering; 184; 106589; 10-2019; 1-45
0920-4105
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151524
identifier_str_mv Betancur, Stefanía; Olmos Carreno, Carol Maritza; Perez, Maximiliano Sebastian; Lerner, Betiana; Franco, Camilo A.; et al.; A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery; Elsevier Science; Journal of Petroleum Science and Engineering; 184; 106589; 10-2019; 1-45
0920-4105
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.petrol.2019.106589
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0920410519310101
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269184535298048
score 13.13397