Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina
- Autores
- Antonietta, Mariana; Fanello, Diego Darío; Acciaresi, H. A.; Guiamet, Juan Jose
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Increases in maize (Zea mays L.) yield over the past few decades have been associated with breeding for tolerance to progressively higher plant densities. Since high plant density exacerbates interplant competition, it has been suggested that improved resource capture through delayed senescence might be advantageous in such situations. The main objectives of this work were to determine (1) the time-course of canopy senescence, (2) post-silking C and N accumulation and (3) yield responses of contemporary maize hybrids with different expression of the stay green (SG) character grown in a range of plant densities from moderate to intense crowding stress. Three experiments consisting of a combination of different plant densities (from 6 to 10 pl m−2) and commercial hybrids with different timing of senescence were carried out. High density accelerated leaf senescence at the lower canopy layer. The SG hybrids delayed senescence and retained green leaves at physiological maturity at all tested densities. One of these hybrids (NK880), with a strong SG character, retained green leaves at all canopy layers, even at the lower layer exposed to limiting irradiance. Lower canopy leaves maintained high respiratory rates in NK880, while leaves of the NSG hybrid (DK682) senesced and their respiration became not detectable. At the highest tested density, the NSG DK682 achieved greater grain yields than the SG NK880. Increased density reduced kernel weight (KW), and this decrease was more pronounced for the SG NK880 (6–18% comparing 10 vs. 8 pl m−2). In spite of delayed senescence in NK880, no hybrid differences were found for post-silking dry matter accumulation and plant dry matter at physiological maturity. Unexpectedly, plant nitrogen content (Nc) at harvest was similar (Exp. I) or even lower (P < 0.05, Exp. II) in the SG NK880. This was the result of lower net N accumulation during the post-silking period (Exp. I) or lower Nc achieved at silking (Exp. II) in the SG NK880. A strong positive relation was found between KW and N concentration in kernels, with %N in kernels being below the critical N concentration to achieve potential KW (around 1.4%) in the SG hybrid. This suggests that yield in NK880 was limited by N. In the SG genotype, N remobilization from vegetative organs did not seem to compensate for the N deficit for optimum grain growth. In summary, at high densities the NK880 hybrid displayed a strong, constitutive SG character, even if it accumulated less N, and senescence delay was not reflected in higher grain yield.
Fil: Antonietta, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina
Fil: Fanello, Diego Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina
Fil: Acciaresi, H. A.. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina
Fil: Guiamet, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina - Materia
-
Maize
Stay Green
Senescence
Plant Density - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14487
Ver los metadatos del registro completo
id |
CONICETDig_9f1f71df7c61d2ca821081e1de6ed45b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14487 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from ArgentinaAntonietta, MarianaFanello, Diego DaríoAcciaresi, H. A.Guiamet, Juan JoseMaizeStay GreenSenescencePlant Densityhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Increases in maize (Zea mays L.) yield over the past few decades have been associated with breeding for tolerance to progressively higher plant densities. Since high plant density exacerbates interplant competition, it has been suggested that improved resource capture through delayed senescence might be advantageous in such situations. The main objectives of this work were to determine (1) the time-course of canopy senescence, (2) post-silking C and N accumulation and (3) yield responses of contemporary maize hybrids with different expression of the stay green (SG) character grown in a range of plant densities from moderate to intense crowding stress. Three experiments consisting of a combination of different plant densities (from 6 to 10 pl m−2) and commercial hybrids with different timing of senescence were carried out. High density accelerated leaf senescence at the lower canopy layer. The SG hybrids delayed senescence and retained green leaves at physiological maturity at all tested densities. One of these hybrids (NK880), with a strong SG character, retained green leaves at all canopy layers, even at the lower layer exposed to limiting irradiance. Lower canopy leaves maintained high respiratory rates in NK880, while leaves of the NSG hybrid (DK682) senesced and their respiration became not detectable. At the highest tested density, the NSG DK682 achieved greater grain yields than the SG NK880. Increased density reduced kernel weight (KW), and this decrease was more pronounced for the SG NK880 (6–18% comparing 10 vs. 8 pl m−2). In spite of delayed senescence in NK880, no hybrid differences were found for post-silking dry matter accumulation and plant dry matter at physiological maturity. Unexpectedly, plant nitrogen content (Nc) at harvest was similar (Exp. I) or even lower (P < 0.05, Exp. II) in the SG NK880. This was the result of lower net N accumulation during the post-silking period (Exp. I) or lower Nc achieved at silking (Exp. II) in the SG NK880. A strong positive relation was found between KW and N concentration in kernels, with %N in kernels being below the critical N concentration to achieve potential KW (around 1.4%) in the SG hybrid. This suggests that yield in NK880 was limited by N. In the SG genotype, N remobilization from vegetative organs did not seem to compensate for the N deficit for optimum grain growth. In summary, at high densities the NK880 hybrid displayed a strong, constitutive SG character, even if it accumulated less N, and senescence delay was not reflected in higher grain yield.Fil: Antonietta, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaFil: Fanello, Diego Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaFil: Acciaresi, H. A.. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaFil: Guiamet, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14487Antonietta, Mariana; Fanello, Diego Darío; Acciaresi, H. A.; Guiamet, Juan Jose; Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina; Elsevier Science; Field Crops Research; 155; 1-2014; 111-1190378-4290enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2013.09.016info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378429013003225info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:09Zoai:ri.conicet.gov.ar:11336/14487instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:09.952CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
title |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
spellingShingle |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina Antonietta, Mariana Maize Stay Green Senescence Plant Density |
title_short |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
title_full |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
title_fullStr |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
title_full_unstemmed |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
title_sort |
Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina |
dc.creator.none.fl_str_mv |
Antonietta, Mariana Fanello, Diego Darío Acciaresi, H. A. Guiamet, Juan Jose |
author |
Antonietta, Mariana |
author_facet |
Antonietta, Mariana Fanello, Diego Darío Acciaresi, H. A. Guiamet, Juan Jose |
author_role |
author |
author2 |
Fanello, Diego Darío Acciaresi, H. A. Guiamet, Juan Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Maize Stay Green Senescence Plant Density |
topic |
Maize Stay Green Senescence Plant Density |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Increases in maize (Zea mays L.) yield over the past few decades have been associated with breeding for tolerance to progressively higher plant densities. Since high plant density exacerbates interplant competition, it has been suggested that improved resource capture through delayed senescence might be advantageous in such situations. The main objectives of this work were to determine (1) the time-course of canopy senescence, (2) post-silking C and N accumulation and (3) yield responses of contemporary maize hybrids with different expression of the stay green (SG) character grown in a range of plant densities from moderate to intense crowding stress. Three experiments consisting of a combination of different plant densities (from 6 to 10 pl m−2) and commercial hybrids with different timing of senescence were carried out. High density accelerated leaf senescence at the lower canopy layer. The SG hybrids delayed senescence and retained green leaves at physiological maturity at all tested densities. One of these hybrids (NK880), with a strong SG character, retained green leaves at all canopy layers, even at the lower layer exposed to limiting irradiance. Lower canopy leaves maintained high respiratory rates in NK880, while leaves of the NSG hybrid (DK682) senesced and their respiration became not detectable. At the highest tested density, the NSG DK682 achieved greater grain yields than the SG NK880. Increased density reduced kernel weight (KW), and this decrease was more pronounced for the SG NK880 (6–18% comparing 10 vs. 8 pl m−2). In spite of delayed senescence in NK880, no hybrid differences were found for post-silking dry matter accumulation and plant dry matter at physiological maturity. Unexpectedly, plant nitrogen content (Nc) at harvest was similar (Exp. I) or even lower (P < 0.05, Exp. II) in the SG NK880. This was the result of lower net N accumulation during the post-silking period (Exp. I) or lower Nc achieved at silking (Exp. II) in the SG NK880. A strong positive relation was found between KW and N concentration in kernels, with %N in kernels being below the critical N concentration to achieve potential KW (around 1.4%) in the SG hybrid. This suggests that yield in NK880 was limited by N. In the SG genotype, N remobilization from vegetative organs did not seem to compensate for the N deficit for optimum grain growth. In summary, at high densities the NK880 hybrid displayed a strong, constitutive SG character, even if it accumulated less N, and senescence delay was not reflected in higher grain yield. Fil: Antonietta, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina Fil: Fanello, Diego Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina Fil: Acciaresi, H. A.. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina Fil: Guiamet, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Fisiología Vegetal; Argentina; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina |
description |
Increases in maize (Zea mays L.) yield over the past few decades have been associated with breeding for tolerance to progressively higher plant densities. Since high plant density exacerbates interplant competition, it has been suggested that improved resource capture through delayed senescence might be advantageous in such situations. The main objectives of this work were to determine (1) the time-course of canopy senescence, (2) post-silking C and N accumulation and (3) yield responses of contemporary maize hybrids with different expression of the stay green (SG) character grown in a range of plant densities from moderate to intense crowding stress. Three experiments consisting of a combination of different plant densities (from 6 to 10 pl m−2) and commercial hybrids with different timing of senescence were carried out. High density accelerated leaf senescence at the lower canopy layer. The SG hybrids delayed senescence and retained green leaves at physiological maturity at all tested densities. One of these hybrids (NK880), with a strong SG character, retained green leaves at all canopy layers, even at the lower layer exposed to limiting irradiance. Lower canopy leaves maintained high respiratory rates in NK880, while leaves of the NSG hybrid (DK682) senesced and their respiration became not detectable. At the highest tested density, the NSG DK682 achieved greater grain yields than the SG NK880. Increased density reduced kernel weight (KW), and this decrease was more pronounced for the SG NK880 (6–18% comparing 10 vs. 8 pl m−2). In spite of delayed senescence in NK880, no hybrid differences were found for post-silking dry matter accumulation and plant dry matter at physiological maturity. Unexpectedly, plant nitrogen content (Nc) at harvest was similar (Exp. I) or even lower (P < 0.05, Exp. II) in the SG NK880. This was the result of lower net N accumulation during the post-silking period (Exp. I) or lower Nc achieved at silking (Exp. II) in the SG NK880. A strong positive relation was found between KW and N concentration in kernels, with %N in kernels being below the critical N concentration to achieve potential KW (around 1.4%) in the SG hybrid. This suggests that yield in NK880 was limited by N. In the SG genotype, N remobilization from vegetative organs did not seem to compensate for the N deficit for optimum grain growth. In summary, at high densities the NK880 hybrid displayed a strong, constitutive SG character, even if it accumulated less N, and senescence delay was not reflected in higher grain yield. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14487 Antonietta, Mariana; Fanello, Diego Darío; Acciaresi, H. A.; Guiamet, Juan Jose; Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina; Elsevier Science; Field Crops Research; 155; 1-2014; 111-119 0378-4290 |
url |
http://hdl.handle.net/11336/14487 |
identifier_str_mv |
Antonietta, Mariana; Fanello, Diego Darío; Acciaresi, H. A.; Guiamet, Juan Jose; Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina; Elsevier Science; Field Crops Research; 155; 1-2014; 111-119 0378-4290 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2013.09.016 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378429013003225 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613802750902272 |
score |
13.070432 |