Multidimensional compressed sensing and their applications
- Autores
- Caiafa, Cesar Federico; Cichocki, Andrzej
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; Polonia - Materia
-
Compressed Sensing
Sparse Representations
Multidimensional Signals
Multiway Arrays - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4132
Ver los metadatos del registro completo
id |
CONICETDig_9ef55b353938a1410afb611218ee8010 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4132 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multidimensional compressed sensing and their applicationsCaiafa, Cesar FedericoCichocki, Andrzej Compressed SensingSparse RepresentationsMultidimensional SignalsMultiway Arrayshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; PoloniaWiley2013-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4132Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-3801942-4795enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/widm.1108/pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1002/widm.1108info:eu-repo/semantics/altIdentifier/issn/1942-4795info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:32Zoai:ri.conicet.gov.ar:11336/4132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:33.311CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multidimensional compressed sensing and their applications |
title |
Multidimensional compressed sensing and their applications |
spellingShingle |
Multidimensional compressed sensing and their applications Caiafa, Cesar Federico Compressed Sensing Sparse Representations Multidimensional Signals Multiway Arrays |
title_short |
Multidimensional compressed sensing and their applications |
title_full |
Multidimensional compressed sensing and their applications |
title_fullStr |
Multidimensional compressed sensing and their applications |
title_full_unstemmed |
Multidimensional compressed sensing and their applications |
title_sort |
Multidimensional compressed sensing and their applications |
dc.creator.none.fl_str_mv |
Caiafa, Cesar Federico Cichocki, Andrzej |
author |
Caiafa, Cesar Federico |
author_facet |
Caiafa, Cesar Federico Cichocki, Andrzej |
author_role |
author |
author2 |
Cichocki, Andrzej |
author2_role |
author |
dc.subject.none.fl_str_mv |
Compressed Sensing Sparse Representations Multidimensional Signals Multiway Arrays |
topic |
Compressed Sensing Sparse Representations Multidimensional Signals Multiway Arrays |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting). Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; Polonia |
description |
Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4132 Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-380 1942-4795 |
url |
http://hdl.handle.net/11336/4132 |
identifier_str_mv |
Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-380 1942-4795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/widm.1108/pdf info:eu-repo/semantics/altIdentifier/doi/10.1002/widm.1108 info:eu-repo/semantics/altIdentifier/issn/1942-4795 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270085620695040 |
score |
13.13397 |