Multidimensional compressed sensing and their applications

Autores
Caiafa, Cesar Federico; Cichocki, Andrzej
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; Polonia
Materia
Compressed Sensing
Sparse Representations
Multidimensional Signals
Multiway Arrays
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4132

id CONICETDig_9ef55b353938a1410afb611218ee8010
oai_identifier_str oai:ri.conicet.gov.ar:11336/4132
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multidimensional compressed sensing and their applicationsCaiafa, Cesar FedericoCichocki, Andrzej Compressed SensingSparse RepresentationsMultidimensional SignalsMultiway Arrayshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; PoloniaWiley2013-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4132Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-3801942-4795enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/widm.1108/pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1002/widm.1108info:eu-repo/semantics/altIdentifier/issn/1942-4795info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:32Zoai:ri.conicet.gov.ar:11336/4132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:33.311CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multidimensional compressed sensing and their applications
title Multidimensional compressed sensing and their applications
spellingShingle Multidimensional compressed sensing and their applications
Caiafa, Cesar Federico
Compressed Sensing
Sparse Representations
Multidimensional Signals
Multiway Arrays
title_short Multidimensional compressed sensing and their applications
title_full Multidimensional compressed sensing and their applications
title_fullStr Multidimensional compressed sensing and their applications
title_full_unstemmed Multidimensional compressed sensing and their applications
title_sort Multidimensional compressed sensing and their applications
dc.creator.none.fl_str_mv Caiafa, Cesar Federico
Cichocki, Andrzej
author Caiafa, Cesar Federico
author_facet Caiafa, Cesar Federico
Cichocki, Andrzej
author_role author
author2 Cichocki, Andrzej
author2_role author
dc.subject.none.fl_str_mv Compressed Sensing
Sparse Representations
Multidimensional Signals
Multiway Arrays
topic Compressed Sensing
Sparse Representations
Multidimensional Signals
Multiway Arrays
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; Polonia
description Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).
publishDate 2013
dc.date.none.fl_str_mv 2013-10-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4132
Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-380
1942-4795
url http://hdl.handle.net/11336/4132
identifier_str_mv Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-380
1942-4795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/widm.1108/pdf
info:eu-repo/semantics/altIdentifier/doi/10.1002/widm.1108
info:eu-repo/semantics/altIdentifier/issn/1942-4795
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270085620695040
score 13.13397