Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations

Autores
Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.
Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Blaha, Peter. Vienna University of Technology; Austria
Fil: Schwarz, Karlheinz. Vienna University of Technology; Austria
Materia
Al(001) Surface
Electronic Structure
Multilayer Relaxations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23067

id CONICETDig_9ee43664f06a246fa252e1090b5ab4cc
oai_identifier_str oai:ri.conicet.gov.ar:11336/23067
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculationsSferco, Silvano JuanBlaha, PeterSchwarz, KarlheinzAl(001) SurfaceElectronic StructureMultilayer Relaxationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Blaha, Peter. Vienna University of Technology; AustriaFil: Schwarz, Karlheinz. Vienna University of Technology; AustriaAmerican Physical Society2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23067Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-754431098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.76.075428info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.075428info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:00Zoai:ri.conicet.gov.ar:11336/23067instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:00.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
title Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
spellingShingle Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
Sferco, Silvano Juan
Al(001) Surface
Electronic Structure
Multilayer Relaxations
title_short Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
title_full Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
title_fullStr Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
title_full_unstemmed Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
title_sort Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
dc.creator.none.fl_str_mv Sferco, Silvano Juan
Blaha, Peter
Schwarz, Karlheinz
author Sferco, Silvano Juan
author_facet Sferco, Silvano Juan
Blaha, Peter
Schwarz, Karlheinz
author_role author
author2 Blaha, Peter
Schwarz, Karlheinz
author2_role author
author
dc.subject.none.fl_str_mv Al(001) Surface
Electronic Structure
Multilayer Relaxations
topic Al(001) Surface
Electronic Structure
Multilayer Relaxations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.
Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Blaha, Peter. Vienna University of Technology; Austria
Fil: Schwarz, Karlheinz. Vienna University of Technology; Austria
description The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.
publishDate 2007
dc.date.none.fl_str_mv 2007-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23067
Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-75443
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23067
identifier_str_mv Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-75443
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.76.075428
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.075428
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613731404742656
score 13.070432