Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations
- Autores
- Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.
Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Blaha, Peter. Vienna University of Technology; Austria
Fil: Schwarz, Karlheinz. Vienna University of Technology; Austria - Materia
-
Al(001) Surface
Electronic Structure
Multilayer Relaxations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23067
Ver los metadatos del registro completo
id |
CONICETDig_9ee43664f06a246fa252e1090b5ab4cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23067 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculationsSferco, Silvano JuanBlaha, PeterSchwarz, KarlheinzAl(001) SurfaceElectronic StructureMultilayer Relaxationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface.Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Blaha, Peter. Vienna University of Technology; AustriaFil: Schwarz, Karlheinz. Vienna University of Technology; AustriaAmerican Physical Society2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23067Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-754431098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.76.075428info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.075428info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:00Zoai:ri.conicet.gov.ar:11336/23067instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:00.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
title |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
spellingShingle |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations Sferco, Silvano Juan Al(001) Surface Electronic Structure Multilayer Relaxations |
title_short |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
title_full |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
title_fullStr |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
title_full_unstemmed |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
title_sort |
Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations |
dc.creator.none.fl_str_mv |
Sferco, Silvano Juan Blaha, Peter Schwarz, Karlheinz |
author |
Sferco, Silvano Juan |
author_facet |
Sferco, Silvano Juan Blaha, Peter Schwarz, Karlheinz |
author_role |
author |
author2 |
Blaha, Peter Schwarz, Karlheinz |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Al(001) Surface Electronic Structure Multilayer Relaxations |
topic |
Al(001) Surface Electronic Structure Multilayer Relaxations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface. Fil: Sferco, Silvano Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Blaha, Peter. Vienna University of Technology; Austria Fil: Schwarz, Karlheinz. Vienna University of Technology; Austria |
description |
The multilayer relaxations of pure Al001 surface were theoretically analyzed using ab initio all-electron calculations. Big slabs 23 atomic layers+20 vacuum layers were needed to capture the deep pattern of multilayer relaxations. We have obtained an outward relaxation for the surface interlayer distance and deep interlayer relaxations characterized by a damped oscillation wave pattern, with several interlayers by cycle. The first three interlayers were found to be expanded, while the following four interlayers were found to be contracted. A charge density analysis allows us to correlate the outward relaxation with the population imbalance between the atomiclike p and p orbitals of atoms at the surface. Multilayer relaxations are related to the presence of distributed Friedel oscillations in the charge density difference between bulk and bulk-truncated slabs. Work function and surface energy results are also presented and discussed. In order to calculate the latter, a high precision Al bulk energy value was obtained irrespective of whether it is calculated from the fcc symmetry or slab derived when the same method-dependent parameters as well as big slabs are used. Error bars, as a measure of the theoretical precision, are included for all studied properties. Our results agree with the available experimental measurements and, partially, with other theoretical calculations. Previous experimental work on this surface has never considered the possibility of such deep relaxations. Our results should motivate further experimental research on the multilayer relaxations of the Al001 surface. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23067 Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-75443 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23067 |
identifier_str_mv |
Sferco, Silvano Juan; Blaha, Peter; Schwarz, Karlheinz; Deep multilayer relaxations on the Al(001) surface: Ab-initio all-electron calculations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 76; 7; 4-2007; 75428-75443 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.76.075428 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.075428 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613731404742656 |
score |
13.070432 |