Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina
- Autores
- Scavuzzo, Carlos Matias; Campero, Micaela Natalia; Maidana, Rosana Elizabeth; Oberto, María Georgina; Periago, Maria Victoria; Porcasi Gomez, Ximena
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Argentina has a heterogeneous prevalence of infections by intestinal parasites (IPs), with the north in the endemic area, especially for soil-transmitted helminths (STHs). We analyzed the spatial patterns of these infections in the city of Tartagal, Salta province, by an observational, correlational, and cross-sectional study in children and adolescents aged 1 to 15 years from native communities. One fecal sample per individual was collected to detect IPs using various diagnostic techniques: Telemann sedimentation, Baermann culture, and Kato-Katz. Moran’s global and local indices were applied together with SaTScan to assess the spatial distribution, with a focus on cluster detection. The extreme gradient boosting (XGBoost) machine-learning model was used to predict the presence of IPs and their transmission pathways. Based on the analysis of 572 fecal samples, a prevalence of 78.3% was found. The most frequent parasite was Giardia lamblia (30.9%). High- and low-risk clusters were observed for most species, distributed in an east-west direction and polarized in two large foci, one near the city of Tartagal and the other in the km 6 community. Spatial XGBoost models were obtained based on distances with a minimum median accuracy of 0.69. Different spatial patterns reflecting the mechanisms of transmission were noted. The distribution of the majority of the parasites studied was aligned in a westerly direction close to the city, but the STH presence was higher in the km 6 community, toward the east. The purely spatial analysis provides a different and complementary overview for the detection of vulnerable hotspots and strategic intervention. Machine-learning models based on spatial variables explain a large percentage of the variability of the IPs.
Fil: Scavuzzo, Carlos Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Campero, Micaela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Maidana, Rosana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Oberto, María Georgina. Universidad Nacional de Córdoba; Argentina
Fil: Periago, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Mundo Sano; Argentina
Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina - Materia
-
Machine learning
Intestinal parasites
Spatial analysis
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247788
Ver los metadatos del registro completo
id |
CONICETDig_9e24df0baa340933f0c5575aa9e33388 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247788 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in ArgentinaScavuzzo, Carlos MatiasCampero, Micaela NataliaMaidana, Rosana ElizabethOberto, María GeorginaPeriago, Maria VictoriaPorcasi Gomez, XimenaMachine learningIntestinal parasitesSpatial analysisArgentinahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Argentina has a heterogeneous prevalence of infections by intestinal parasites (IPs), with the north in the endemic area, especially for soil-transmitted helminths (STHs). We analyzed the spatial patterns of these infections in the city of Tartagal, Salta province, by an observational, correlational, and cross-sectional study in children and adolescents aged 1 to 15 years from native communities. One fecal sample per individual was collected to detect IPs using various diagnostic techniques: Telemann sedimentation, Baermann culture, and Kato-Katz. Moran’s global and local indices were applied together with SaTScan to assess the spatial distribution, with a focus on cluster detection. The extreme gradient boosting (XGBoost) machine-learning model was used to predict the presence of IPs and their transmission pathways. Based on the analysis of 572 fecal samples, a prevalence of 78.3% was found. The most frequent parasite was Giardia lamblia (30.9%). High- and low-risk clusters were observed for most species, distributed in an east-west direction and polarized in two large foci, one near the city of Tartagal and the other in the km 6 community. Spatial XGBoost models were obtained based on distances with a minimum median accuracy of 0.69. Different spatial patterns reflecting the mechanisms of transmission were noted. The distribution of the majority of the parasites studied was aligned in a westerly direction close to the city, but the STH presence was higher in the km 6 community, toward the east. The purely spatial analysis provides a different and complementary overview for the detection of vulnerable hotspots and strategic intervention. Machine-learning models based on spatial variables explain a large percentage of the variability of the IPs.Fil: Scavuzzo, Carlos Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Campero, Micaela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Maidana, Rosana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Oberto, María Georgina. Universidad Nacional de Córdoba; ArgentinaFil: Periago, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Mundo Sano; ArgentinaFil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; ArgentinaUniv Naples Federico Ii2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247788Scavuzzo, Carlos Matias; Campero, Micaela Natalia; Maidana, Rosana Elizabeth; Oberto, María Georgina; Periago, Maria Victoria; et al.; Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina; Univ Naples Federico Ii; Geospatial Health; 19; 1; 5-2024; 1-121827-1987CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.geospatialhealth.net/gh/article/view/1279info:eu-repo/semantics/altIdentifier/doi/10.4081/gh.2024.1279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:25Zoai:ri.conicet.gov.ar:11336/247788instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:25.391CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
title |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
spellingShingle |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina Scavuzzo, Carlos Matias Machine learning Intestinal parasites Spatial analysis Argentina |
title_short |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
title_full |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
title_fullStr |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
title_full_unstemmed |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
title_sort |
Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina |
dc.creator.none.fl_str_mv |
Scavuzzo, Carlos Matias Campero, Micaela Natalia Maidana, Rosana Elizabeth Oberto, María Georgina Periago, Maria Victoria Porcasi Gomez, Ximena |
author |
Scavuzzo, Carlos Matias |
author_facet |
Scavuzzo, Carlos Matias Campero, Micaela Natalia Maidana, Rosana Elizabeth Oberto, María Georgina Periago, Maria Victoria Porcasi Gomez, Ximena |
author_role |
author |
author2 |
Campero, Micaela Natalia Maidana, Rosana Elizabeth Oberto, María Georgina Periago, Maria Victoria Porcasi Gomez, Ximena |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Machine learning Intestinal parasites Spatial analysis Argentina |
topic |
Machine learning Intestinal parasites Spatial analysis Argentina |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Argentina has a heterogeneous prevalence of infections by intestinal parasites (IPs), with the north in the endemic area, especially for soil-transmitted helminths (STHs). We analyzed the spatial patterns of these infections in the city of Tartagal, Salta province, by an observational, correlational, and cross-sectional study in children and adolescents aged 1 to 15 years from native communities. One fecal sample per individual was collected to detect IPs using various diagnostic techniques: Telemann sedimentation, Baermann culture, and Kato-Katz. Moran’s global and local indices were applied together with SaTScan to assess the spatial distribution, with a focus on cluster detection. The extreme gradient boosting (XGBoost) machine-learning model was used to predict the presence of IPs and their transmission pathways. Based on the analysis of 572 fecal samples, a prevalence of 78.3% was found. The most frequent parasite was Giardia lamblia (30.9%). High- and low-risk clusters were observed for most species, distributed in an east-west direction and polarized in two large foci, one near the city of Tartagal and the other in the km 6 community. Spatial XGBoost models were obtained based on distances with a minimum median accuracy of 0.69. Different spatial patterns reflecting the mechanisms of transmission were noted. The distribution of the majority of the parasites studied was aligned in a westerly direction close to the city, but the STH presence was higher in the km 6 community, toward the east. The purely spatial analysis provides a different and complementary overview for the detection of vulnerable hotspots and strategic intervention. Machine-learning models based on spatial variables explain a large percentage of the variability of the IPs. Fil: Scavuzzo, Carlos Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Campero, Micaela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Maidana, Rosana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Oberto, María Georgina. Universidad Nacional de Córdoba; Argentina Fil: Periago, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Mundo Sano; Argentina Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina |
description |
Argentina has a heterogeneous prevalence of infections by intestinal parasites (IPs), with the north in the endemic area, especially for soil-transmitted helminths (STHs). We analyzed the spatial patterns of these infections in the city of Tartagal, Salta province, by an observational, correlational, and cross-sectional study in children and adolescents aged 1 to 15 years from native communities. One fecal sample per individual was collected to detect IPs using various diagnostic techniques: Telemann sedimentation, Baermann culture, and Kato-Katz. Moran’s global and local indices were applied together with SaTScan to assess the spatial distribution, with a focus on cluster detection. The extreme gradient boosting (XGBoost) machine-learning model was used to predict the presence of IPs and their transmission pathways. Based on the analysis of 572 fecal samples, a prevalence of 78.3% was found. The most frequent parasite was Giardia lamblia (30.9%). High- and low-risk clusters were observed for most species, distributed in an east-west direction and polarized in two large foci, one near the city of Tartagal and the other in the km 6 community. Spatial XGBoost models were obtained based on distances with a minimum median accuracy of 0.69. Different spatial patterns reflecting the mechanisms of transmission were noted. The distribution of the majority of the parasites studied was aligned in a westerly direction close to the city, but the STH presence was higher in the km 6 community, toward the east. The purely spatial analysis provides a different and complementary overview for the detection of vulnerable hotspots and strategic intervention. Machine-learning models based on spatial variables explain a large percentage of the variability of the IPs. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247788 Scavuzzo, Carlos Matias; Campero, Micaela Natalia; Maidana, Rosana Elizabeth; Oberto, María Georgina; Periago, Maria Victoria; et al.; Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina; Univ Naples Federico Ii; Geospatial Health; 19; 1; 5-2024; 1-12 1827-1987 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247788 |
identifier_str_mv |
Scavuzzo, Carlos Matias; Campero, Micaela Natalia; Maidana, Rosana Elizabeth; Oberto, María Georgina; Periago, Maria Victoria; et al.; Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina; Univ Naples Federico Ii; Geospatial Health; 19; 1; 5-2024; 1-12 1827-1987 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.geospatialhealth.net/gh/article/view/1279 info:eu-repo/semantics/altIdentifier/doi/10.4081/gh.2024.1279 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Naples Federico Ii |
publisher.none.fl_str_mv |
Univ Naples Federico Ii |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614444933447680 |
score |
13.070432 |