Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field

Autores
Peirone, Laura Soledad; Pereyra Irujo, Gustavo Adrian; Bolton, Alejandro; Erreguerena, Ignacio Antonio; Aguirrezábal, Luis Adolfo Nazareno
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.
Fil: Peirone, Laura Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
Fil: Pereyra Irujo, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; Argentina
Fil: Bolton, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
Fil: Erreguerena, Ignacio Antonio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Aguirrezábal, Luis Adolfo Nazareno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
Materia
DROUGHT SUSCEPTIBILITY INDEX
FIELD
PHENOTYPING
SOYBEAN
TRANSPIRATION EFFICIENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101818

id CONICETDig_9da5196936bfda2740574ac8272f1c6c
oai_identifier_str oai:ri.conicet.gov.ar:11336/101818
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the fieldPeirone, Laura SoledadPereyra Irujo, Gustavo AdrianBolton, AlejandroErreguerena, Ignacio AntonioAguirrezábal, Luis Adolfo NazarenoDROUGHT SUSCEPTIBILITY INDEXFIELDPHENOTYPINGSOYBEANTRANSPIRATION EFFICIENCYhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.Fil: Peirone, Laura Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; ArgentinaFil: Pereyra Irujo, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; ArgentinaFil: Bolton, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; ArgentinaFil: Erreguerena, Ignacio Antonio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Aguirrezábal, Luis Adolfo Nazareno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; ArgentinaFrontiers Media S.A.2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101818Peirone, Laura Soledad; Pereyra Irujo, Gustavo Adrian; Bolton, Alejandro; Erreguerena, Ignacio Antonio; Aguirrezábal, Luis Adolfo Nazareno; Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field; Frontiers Media S.A.; Frontiers in Plant Science; 9; 5-2018; 1-141664-462XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2018.00587/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.00587info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:34Zoai:ri.conicet.gov.ar:11336/101818instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:35.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
title Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
spellingShingle Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
Peirone, Laura Soledad
DROUGHT SUSCEPTIBILITY INDEX
FIELD
PHENOTYPING
SOYBEAN
TRANSPIRATION EFFICIENCY
title_short Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
title_full Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
title_fullStr Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
title_full_unstemmed Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
title_sort Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field
dc.creator.none.fl_str_mv Peirone, Laura Soledad
Pereyra Irujo, Gustavo Adrian
Bolton, Alejandro
Erreguerena, Ignacio Antonio
Aguirrezábal, Luis Adolfo Nazareno
author Peirone, Laura Soledad
author_facet Peirone, Laura Soledad
Pereyra Irujo, Gustavo Adrian
Bolton, Alejandro
Erreguerena, Ignacio Antonio
Aguirrezábal, Luis Adolfo Nazareno
author_role author
author2 Pereyra Irujo, Gustavo Adrian
Bolton, Alejandro
Erreguerena, Ignacio Antonio
Aguirrezábal, Luis Adolfo Nazareno
author2_role author
author
author
author
dc.subject.none.fl_str_mv DROUGHT SUSCEPTIBILITY INDEX
FIELD
PHENOTYPING
SOYBEAN
TRANSPIRATION EFFICIENCY
topic DROUGHT SUSCEPTIBILITY INDEX
FIELD
PHENOTYPING
SOYBEAN
TRANSPIRATION EFFICIENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.
Fil: Peirone, Laura Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
Fil: Pereyra Irujo, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; Argentina
Fil: Bolton, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
Fil: Erreguerena, Ignacio Antonio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Aguirrezábal, Luis Adolfo Nazareno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina
description Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101818
Peirone, Laura Soledad; Pereyra Irujo, Gustavo Adrian; Bolton, Alejandro; Erreguerena, Ignacio Antonio; Aguirrezábal, Luis Adolfo Nazareno; Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field; Frontiers Media S.A.; Frontiers in Plant Science; 9; 5-2018; 1-14
1664-462X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101818
identifier_str_mv Peirone, Laura Soledad; Pereyra Irujo, Gustavo Adrian; Bolton, Alejandro; Erreguerena, Ignacio Antonio; Aguirrezábal, Luis Adolfo Nazareno; Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for predicting drought tolerance of soybean in the field; Frontiers Media S.A.; Frontiers in Plant Science; 9; 5-2018; 1-14
1664-462X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2018.00587/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.00587
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614053774753792
score 13.070432