AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes

Autores
Aspromonte, Soledad Guadalupe; Serra, Ramiro Marcelo; Miro, Eduardo Ernesto; Boix, Alicia Viviana
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Silver catalysts were prepared by ion exchange of NaMordenite with 5, 10 and 15 wt% Ag. Various characterization techniques such as TPR, UV-vis and XPS indicated the presence of small particles of highly dispersed Ag2O together with isolated Ag+ cations located in α, β and γ exchange sites of NaMOR. The formation of clusters of cationic silver (Agnm+) was also considered. The prepared samples were active in the Selective Catalytic Reduction of NOx in the presence of toluene or butane as reducing agents, excess oxygen and 2% H2O. The solid with 15 wt% Ag was the most active one in the presence of water, reaching a maximum conversion of NOx to N2 of 47.5% or 51.2% when butane or toluene were respectively used. Under dry conditions, the maximum conversion of NO had an optimum between 5 and 10 wt% Ag for both hydrocarbons. The NaMOR support showed a higher adsorption capacity than the exchanged samples with both hydrocarbons. For the silver loaded solids, the toluene adsorption capacity at 100 °C increased with the increase of the metal content. In contrast, the amount of butane adsorbed was similar for the different contents of Ag. Consequently, silver has two opposite effects: one is the partial obstruction of the mordenite channels, as seen by the loss of crystallinity and the decrease of surface area and pore volume; and the other effect is the chemical interaction that depends on the nature of the adsorbed hydrocarbon. The interaction between toluene and Ag+ ions is stronger with the π-electrons of the aromatic ring of the toluene molecule than with the σ-electrons of the linear chain of butane. For this reason, toluene is retained at higher temperatures than butane. In addition, between 300 and 500 °C, the appearance of signals corresponding to H2, CO2 and H2O is observed during the TPD of toluene. This indicates that the toluene decomposition occurs, producing coke and hydrogen. Most probably, the generation of CO2 and H2O is a consequence of the reduction of Ag2O particles with toluene.
Fil: Aspromonte, Soledad Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Serra, Ramiro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Boix, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Materia
Agnamordenite
Butane Adsorption
Scr-Nox
Toluene Adsorption
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52871

id CONICETDig_9d97bd3c70a90656197f48bbaefd693a
oai_identifier_str oai:ri.conicet.gov.ar:11336/52871
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processesAspromonte, Soledad GuadalupeSerra, Ramiro MarceloMiro, Eduardo ErnestoBoix, Alicia VivianaAgnamordeniteButane AdsorptionScr-NoxToluene Adsorptionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Silver catalysts were prepared by ion exchange of NaMordenite with 5, 10 and 15 wt% Ag. Various characterization techniques such as TPR, UV-vis and XPS indicated the presence of small particles of highly dispersed Ag2O together with isolated Ag+ cations located in α, β and γ exchange sites of NaMOR. The formation of clusters of cationic silver (Agnm+) was also considered. The prepared samples were active in the Selective Catalytic Reduction of NOx in the presence of toluene or butane as reducing agents, excess oxygen and 2% H2O. The solid with 15 wt% Ag was the most active one in the presence of water, reaching a maximum conversion of NOx to N2 of 47.5% or 51.2% when butane or toluene were respectively used. Under dry conditions, the maximum conversion of NO had an optimum between 5 and 10 wt% Ag for both hydrocarbons. The NaMOR support showed a higher adsorption capacity than the exchanged samples with both hydrocarbons. For the silver loaded solids, the toluene adsorption capacity at 100 °C increased with the increase of the metal content. In contrast, the amount of butane adsorbed was similar for the different contents of Ag. Consequently, silver has two opposite effects: one is the partial obstruction of the mordenite channels, as seen by the loss of crystallinity and the decrease of surface area and pore volume; and the other effect is the chemical interaction that depends on the nature of the adsorbed hydrocarbon. The interaction between toluene and Ag+ ions is stronger with the π-electrons of the aromatic ring of the toluene molecule than with the σ-electrons of the linear chain of butane. For this reason, toluene is retained at higher temperatures than butane. In addition, between 300 and 500 °C, the appearance of signals corresponding to H2, CO2 and H2O is observed during the TPD of toluene. This indicates that the toluene decomposition occurs, producing coke and hydrogen. Most probably, the generation of CO2 and H2O is a consequence of the reduction of Ag2O particles with toluene.Fil: Aspromonte, Soledad Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Serra, Ramiro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Boix, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaElsevier Science2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52871Aspromonte, Soledad Guadalupe; Serra, Ramiro Marcelo; Miro, Eduardo Ernesto; Boix, Alicia Viviana; AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes; Elsevier Science; Applied Catalysis A: General; 407; 1-2; 11-2011; 134-1440926-860XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2011.08.033info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X11004881info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:22Zoai:ri.conicet.gov.ar:11336/52871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:22.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
title AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
spellingShingle AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
Aspromonte, Soledad Guadalupe
Agnamordenite
Butane Adsorption
Scr-Nox
Toluene Adsorption
title_short AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
title_full AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
title_fullStr AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
title_full_unstemmed AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
title_sort AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes
dc.creator.none.fl_str_mv Aspromonte, Soledad Guadalupe
Serra, Ramiro Marcelo
Miro, Eduardo Ernesto
Boix, Alicia Viviana
author Aspromonte, Soledad Guadalupe
author_facet Aspromonte, Soledad Guadalupe
Serra, Ramiro Marcelo
Miro, Eduardo Ernesto
Boix, Alicia Viviana
author_role author
author2 Serra, Ramiro Marcelo
Miro, Eduardo Ernesto
Boix, Alicia Viviana
author2_role author
author
author
dc.subject.none.fl_str_mv Agnamordenite
Butane Adsorption
Scr-Nox
Toluene Adsorption
topic Agnamordenite
Butane Adsorption
Scr-Nox
Toluene Adsorption
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Silver catalysts were prepared by ion exchange of NaMordenite with 5, 10 and 15 wt% Ag. Various characterization techniques such as TPR, UV-vis and XPS indicated the presence of small particles of highly dispersed Ag2O together with isolated Ag+ cations located in α, β and γ exchange sites of NaMOR. The formation of clusters of cationic silver (Agnm+) was also considered. The prepared samples were active in the Selective Catalytic Reduction of NOx in the presence of toluene or butane as reducing agents, excess oxygen and 2% H2O. The solid with 15 wt% Ag was the most active one in the presence of water, reaching a maximum conversion of NOx to N2 of 47.5% or 51.2% when butane or toluene were respectively used. Under dry conditions, the maximum conversion of NO had an optimum between 5 and 10 wt% Ag for both hydrocarbons. The NaMOR support showed a higher adsorption capacity than the exchanged samples with both hydrocarbons. For the silver loaded solids, the toluene adsorption capacity at 100 °C increased with the increase of the metal content. In contrast, the amount of butane adsorbed was similar for the different contents of Ag. Consequently, silver has two opposite effects: one is the partial obstruction of the mordenite channels, as seen by the loss of crystallinity and the decrease of surface area and pore volume; and the other effect is the chemical interaction that depends on the nature of the adsorbed hydrocarbon. The interaction between toluene and Ag+ ions is stronger with the π-electrons of the aromatic ring of the toluene molecule than with the σ-electrons of the linear chain of butane. For this reason, toluene is retained at higher temperatures than butane. In addition, between 300 and 500 °C, the appearance of signals corresponding to H2, CO2 and H2O is observed during the TPD of toluene. This indicates that the toluene decomposition occurs, producing coke and hydrogen. Most probably, the generation of CO2 and H2O is a consequence of the reduction of Ag2O particles with toluene.
Fil: Aspromonte, Soledad Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Serra, Ramiro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Boix, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
description Silver catalysts were prepared by ion exchange of NaMordenite with 5, 10 and 15 wt% Ag. Various characterization techniques such as TPR, UV-vis and XPS indicated the presence of small particles of highly dispersed Ag2O together with isolated Ag+ cations located in α, β and γ exchange sites of NaMOR. The formation of clusters of cationic silver (Agnm+) was also considered. The prepared samples were active in the Selective Catalytic Reduction of NOx in the presence of toluene or butane as reducing agents, excess oxygen and 2% H2O. The solid with 15 wt% Ag was the most active one in the presence of water, reaching a maximum conversion of NOx to N2 of 47.5% or 51.2% when butane or toluene were respectively used. Under dry conditions, the maximum conversion of NO had an optimum between 5 and 10 wt% Ag for both hydrocarbons. The NaMOR support showed a higher adsorption capacity than the exchanged samples with both hydrocarbons. For the silver loaded solids, the toluene adsorption capacity at 100 °C increased with the increase of the metal content. In contrast, the amount of butane adsorbed was similar for the different contents of Ag. Consequently, silver has two opposite effects: one is the partial obstruction of the mordenite channels, as seen by the loss of crystallinity and the decrease of surface area and pore volume; and the other effect is the chemical interaction that depends on the nature of the adsorbed hydrocarbon. The interaction between toluene and Ag+ ions is stronger with the π-electrons of the aromatic ring of the toluene molecule than with the σ-electrons of the linear chain of butane. For this reason, toluene is retained at higher temperatures than butane. In addition, between 300 and 500 °C, the appearance of signals corresponding to H2, CO2 and H2O is observed during the TPD of toluene. This indicates that the toluene decomposition occurs, producing coke and hydrogen. Most probably, the generation of CO2 and H2O is a consequence of the reduction of Ag2O particles with toluene.
publishDate 2011
dc.date.none.fl_str_mv 2011-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52871
Aspromonte, Soledad Guadalupe; Serra, Ramiro Marcelo; Miro, Eduardo Ernesto; Boix, Alicia Viviana; AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes; Elsevier Science; Applied Catalysis A: General; 407; 1-2; 11-2011; 134-144
0926-860X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52871
identifier_str_mv Aspromonte, Soledad Guadalupe; Serra, Ramiro Marcelo; Miro, Eduardo Ernesto; Boix, Alicia Viviana; AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes; Elsevier Science; Applied Catalysis A: General; 407; 1-2; 11-2011; 134-144
0926-860X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2011.08.033
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X11004881
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782420387364864
score 12.982451