Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems

Autores
Molina, Matías José; Porras Giraldo, Andrés Felipe; Pizzano, Aldana; Rodriguez Reartes, Sabrina Belen; Zabaloy, Marcelo Santiago
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The goal of this work was to develop an algorithm for computing, over wide ranges of conditions, phase envelopes and three-phase envelopes for reactive systems including the possibility of presence, at equilibrium, of solid phases of the solid-solution type. To our knowledge, algorithms of such sort are not available in the literature. The familiar constant global composition (z) phase envelope (PE) of a multicomponent non-reactive system shows, in the pressure (P) versus temperature (T) plane, a number of curves, such as bubble point, dew point, liquid-liquid and/or solid (S) - fluid (F) (S+F) curves (z is a vector of global component mole fractions). In a given point of the PE (which often includes critical points), a phase of finite size (major phase) of composition z is at equilibrium with a phase of differential size (incipient phase) of composition generally different from z. The PE is the boundary between the homogeneous region and the two-phase (heterogeneous) region. The information on the phase behavior of the multicomponent system of interest becomes more complete if some additional types of lines are plotted within the heterogeneous region, e.g., the three-phase envelopes (3PEs) or three-phase lines (3PLs, for the case of binary systems). A 3PE is the boundary between a two-phase region and a three-phase region. In a point of a 3PE, two phases of finite size are at equilibrium with an incipient phase (still being the global composition equal to z). The set of all PE segments plus all the auxiliary lines (e.g., 3PEs or 3PLs) constitute a quite complete constant z diagram which is named ?isopleth? (IP). For reactive systems, the global composition z changes along the reactive PE (R-PE) and also along the reactive 3PE (R-3PE) or reactive 3PL (R-3PL) (depending on the degrees of freedom (DsOF) of the reactive three-phase system). Each point of any of these curves corresponds to the simultaneous phase and chemical equilibria. Both, in IPs and in reactive IPs (R-IPs) the global mole fractions of the atoms indeed remain constant, while the global mole fractions of the components are constant only for the non-reactive IPs. In a previous work [1], calculation algorithms were developed for all types of lines present in R-IPs involving only fluid phases. In the present work, the possibility of precipitation of solid solutions has been incorporated to the computed R-IPs. The modelling approach proposed by Porras et al. [2] was used to represent the thermodynamic properties of multi-component solid phases (Solid Solution Approach (SSA)). As case study, we have chosen the carbon dioxide (CO2) + 1,2-propylene oxide (PO) + propylene carbonate (PC) system, in which chemical bonds are broken or formed as prescribed by the chemical reaction CO2 + 1,2-propylene oxide ⟷ propylene carbonate. The fluid-state volumetric and phase behavior of this system was modelled through the well-known SRK-EoS coupled to quadratic mixing rules (QMRs). The EoS pure component parameter values, and the values for the binary interaction parameters (considered equal for both the fluid and solid phases), used in the calculations, are given in ref [3], together with the required ?standard state?-related parameters. Other pure component parameters appearing in the solid-solution global fugacity expression were obtained, either from databases, or from reproducing the experimental pure component solid-liquid equilibrium curves. For the chosen reactive system, complete reactive three-phase line segments and reactive phase envelope segments, including the possibility of presence of solid phases that are solid solutions, were computed over wide ranges of conditions using numerical continuation methods. The results are illustrated through the phase diagram, computed for the initial global composition zCO20=0.75, zPO0=0.25 and zPC0=0.0, which is shown in the Graphical Abstract (GA). The obtained results imply the existence of complex patterns of behavior for the computed R-IPs (see insert in GA). The circular marker in the GA is a reactive critical point. Furthermore, a predicted homogeneous solid-solution region is shown in the pressure-temperature plane in the GA. The presence of homogeneous-solid regions in mixture isopleths is of impossible prediction by models that allow precipitation only of solid phases made of pure components (i.e., models that exclude the possibility of solid solutions). The proposed algorithms have been found to be robust and this is ascribed to the applied numerical continuation method.
Fil: Molina, Matías José. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Porras Giraldo, Andrés Felipe. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pizzano, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Rodriguez Reartes, Sabrina Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Universitat Rovira I Virgili; España
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
VI Iberoamerican Conference on Supercritical Fluids
Los Cocos
Argentina
Universidad Nacional de Córdoba
Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad Nacional del Sur
Universidad de Coimbra
Universidad de Castilla La Mancha
Universidad Nacional de Santa Catarina
Materia
REACTIVE SYSTEMS
CHEMICAL AND PHASE EQUILIBRIA
ALGORITHM
SOLID SOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265989

id CONICETDig_9d8dfa1d9c64850ff3fb18b5bd490610
oai_identifier_str oai:ri.conicet.gov.ar:11336/265989
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systemsMolina, Matías JoséPorras Giraldo, Andrés FelipePizzano, AldanaRodriguez Reartes, Sabrina BelenZabaloy, Marcelo SantiagoREACTIVE SYSTEMSCHEMICAL AND PHASE EQUILIBRIAALGORITHMSOLID SOLUTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The goal of this work was to develop an algorithm for computing, over wide ranges of conditions, phase envelopes and three-phase envelopes for reactive systems including the possibility of presence, at equilibrium, of solid phases of the solid-solution type. To our knowledge, algorithms of such sort are not available in the literature. The familiar constant global composition (z) phase envelope (PE) of a multicomponent non-reactive system shows, in the pressure (P) versus temperature (T) plane, a number of curves, such as bubble point, dew point, liquid-liquid and/or solid (S) - fluid (F) (S+F) curves (z is a vector of global component mole fractions). In a given point of the PE (which often includes critical points), a phase of finite size (major phase) of composition z is at equilibrium with a phase of differential size (incipient phase) of composition generally different from z. The PE is the boundary between the homogeneous region and the two-phase (heterogeneous) region. The information on the phase behavior of the multicomponent system of interest becomes more complete if some additional types of lines are plotted within the heterogeneous region, e.g., the three-phase envelopes (3PEs) or three-phase lines (3PLs, for the case of binary systems). A 3PE is the boundary between a two-phase region and a three-phase region. In a point of a 3PE, two phases of finite size are at equilibrium with an incipient phase (still being the global composition equal to z). The set of all PE segments plus all the auxiliary lines (e.g., 3PEs or 3PLs) constitute a quite complete constant z diagram which is named ?isopleth? (IP). For reactive systems, the global composition z changes along the reactive PE (R-PE) and also along the reactive 3PE (R-3PE) or reactive 3PL (R-3PL) (depending on the degrees of freedom (DsOF) of the reactive three-phase system). Each point of any of these curves corresponds to the simultaneous phase and chemical equilibria. Both, in IPs and in reactive IPs (R-IPs) the global mole fractions of the atoms indeed remain constant, while the global mole fractions of the components are constant only for the non-reactive IPs. In a previous work [1], calculation algorithms were developed for all types of lines present in R-IPs involving only fluid phases. In the present work, the possibility of precipitation of solid solutions has been incorporated to the computed R-IPs. The modelling approach proposed by Porras et al. [2] was used to represent the thermodynamic properties of multi-component solid phases (Solid Solution Approach (SSA)). As case study, we have chosen the carbon dioxide (CO2) + 1,2-propylene oxide (PO) + propylene carbonate (PC) system, in which chemical bonds are broken or formed as prescribed by the chemical reaction CO2 + 1,2-propylene oxide ⟷ propylene carbonate. The fluid-state volumetric and phase behavior of this system was modelled through the well-known SRK-EoS coupled to quadratic mixing rules (QMRs). The EoS pure component parameter values, and the values for the binary interaction parameters (considered equal for both the fluid and solid phases), used in the calculations, are given in ref [3], together with the required ?standard state?-related parameters. Other pure component parameters appearing in the solid-solution global fugacity expression were obtained, either from databases, or from reproducing the experimental pure component solid-liquid equilibrium curves. For the chosen reactive system, complete reactive three-phase line segments and reactive phase envelope segments, including the possibility of presence of solid phases that are solid solutions, were computed over wide ranges of conditions using numerical continuation methods. The results are illustrated through the phase diagram, computed for the initial global composition zCO20=0.75, zPO0=0.25 and zPC0=0.0, which is shown in the Graphical Abstract (GA). The obtained results imply the existence of complex patterns of behavior for the computed R-IPs (see insert in GA). The circular marker in the GA is a reactive critical point. Furthermore, a predicted homogeneous solid-solution region is shown in the pressure-temperature plane in the GA. The presence of homogeneous-solid regions in mixture isopleths is of impossible prediction by models that allow precipitation only of solid phases made of pure components (i.e., models that exclude the possibility of solid solutions). The proposed algorithms have been found to be robust and this is ascribed to the applied numerical continuation method.Fil: Molina, Matías José. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Porras Giraldo, Andrés Felipe. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pizzano, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Rodriguez Reartes, Sabrina Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Universitat Rovira I Virgili; EspañaFil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaVI Iberoamerican Conference on Supercritical FluidsLos CocosArgentinaUniversidad Nacional de CórdobaConsejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional del SurUniversidad de CoimbraUniversidad de Castilla La ManchaUniversidad Nacional de Santa CatarinaUniversidad Nacional de Córdoba2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265989Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems; VI Iberoamerican Conference on Supercritical Fluids; Los Cocos; Argentina; 2023; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://prosciba2023.congresos.unc.edu.ar/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:05:12Zoai:ri.conicet.gov.ar:11336/265989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:05:12.553CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
title Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
spellingShingle Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
Molina, Matías José
REACTIVE SYSTEMS
CHEMICAL AND PHASE EQUILIBRIA
ALGORITHM
SOLID SOLUTION
title_short Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
title_full Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
title_fullStr Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
title_full_unstemmed Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
title_sort Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems
dc.creator.none.fl_str_mv Molina, Matías José
Porras Giraldo, Andrés Felipe
Pizzano, Aldana
Rodriguez Reartes, Sabrina Belen
Zabaloy, Marcelo Santiago
author Molina, Matías José
author_facet Molina, Matías José
Porras Giraldo, Andrés Felipe
Pizzano, Aldana
Rodriguez Reartes, Sabrina Belen
Zabaloy, Marcelo Santiago
author_role author
author2 Porras Giraldo, Andrés Felipe
Pizzano, Aldana
Rodriguez Reartes, Sabrina Belen
Zabaloy, Marcelo Santiago
author2_role author
author
author
author
dc.subject.none.fl_str_mv REACTIVE SYSTEMS
CHEMICAL AND PHASE EQUILIBRIA
ALGORITHM
SOLID SOLUTION
topic REACTIVE SYSTEMS
CHEMICAL AND PHASE EQUILIBRIA
ALGORITHM
SOLID SOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The goal of this work was to develop an algorithm for computing, over wide ranges of conditions, phase envelopes and three-phase envelopes for reactive systems including the possibility of presence, at equilibrium, of solid phases of the solid-solution type. To our knowledge, algorithms of such sort are not available in the literature. The familiar constant global composition (z) phase envelope (PE) of a multicomponent non-reactive system shows, in the pressure (P) versus temperature (T) plane, a number of curves, such as bubble point, dew point, liquid-liquid and/or solid (S) - fluid (F) (S+F) curves (z is a vector of global component mole fractions). In a given point of the PE (which often includes critical points), a phase of finite size (major phase) of composition z is at equilibrium with a phase of differential size (incipient phase) of composition generally different from z. The PE is the boundary between the homogeneous region and the two-phase (heterogeneous) region. The information on the phase behavior of the multicomponent system of interest becomes more complete if some additional types of lines are plotted within the heterogeneous region, e.g., the three-phase envelopes (3PEs) or three-phase lines (3PLs, for the case of binary systems). A 3PE is the boundary between a two-phase region and a three-phase region. In a point of a 3PE, two phases of finite size are at equilibrium with an incipient phase (still being the global composition equal to z). The set of all PE segments plus all the auxiliary lines (e.g., 3PEs or 3PLs) constitute a quite complete constant z diagram which is named ?isopleth? (IP). For reactive systems, the global composition z changes along the reactive PE (R-PE) and also along the reactive 3PE (R-3PE) or reactive 3PL (R-3PL) (depending on the degrees of freedom (DsOF) of the reactive three-phase system). Each point of any of these curves corresponds to the simultaneous phase and chemical equilibria. Both, in IPs and in reactive IPs (R-IPs) the global mole fractions of the atoms indeed remain constant, while the global mole fractions of the components are constant only for the non-reactive IPs. In a previous work [1], calculation algorithms were developed for all types of lines present in R-IPs involving only fluid phases. In the present work, the possibility of precipitation of solid solutions has been incorporated to the computed R-IPs. The modelling approach proposed by Porras et al. [2] was used to represent the thermodynamic properties of multi-component solid phases (Solid Solution Approach (SSA)). As case study, we have chosen the carbon dioxide (CO2) + 1,2-propylene oxide (PO) + propylene carbonate (PC) system, in which chemical bonds are broken or formed as prescribed by the chemical reaction CO2 + 1,2-propylene oxide ⟷ propylene carbonate. The fluid-state volumetric and phase behavior of this system was modelled through the well-known SRK-EoS coupled to quadratic mixing rules (QMRs). The EoS pure component parameter values, and the values for the binary interaction parameters (considered equal for both the fluid and solid phases), used in the calculations, are given in ref [3], together with the required ?standard state?-related parameters. Other pure component parameters appearing in the solid-solution global fugacity expression were obtained, either from databases, or from reproducing the experimental pure component solid-liquid equilibrium curves. For the chosen reactive system, complete reactive three-phase line segments and reactive phase envelope segments, including the possibility of presence of solid phases that are solid solutions, were computed over wide ranges of conditions using numerical continuation methods. The results are illustrated through the phase diagram, computed for the initial global composition zCO20=0.75, zPO0=0.25 and zPC0=0.0, which is shown in the Graphical Abstract (GA). The obtained results imply the existence of complex patterns of behavior for the computed R-IPs (see insert in GA). The circular marker in the GA is a reactive critical point. Furthermore, a predicted homogeneous solid-solution region is shown in the pressure-temperature plane in the GA. The presence of homogeneous-solid regions in mixture isopleths is of impossible prediction by models that allow precipitation only of solid phases made of pure components (i.e., models that exclude the possibility of solid solutions). The proposed algorithms have been found to be robust and this is ascribed to the applied numerical continuation method.
Fil: Molina, Matías José. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Porras Giraldo, Andrés Felipe. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pizzano, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Rodriguez Reartes, Sabrina Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Universitat Rovira I Virgili; España
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
VI Iberoamerican Conference on Supercritical Fluids
Los Cocos
Argentina
Universidad Nacional de Córdoba
Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad Nacional del Sur
Universidad de Coimbra
Universidad de Castilla La Mancha
Universidad Nacional de Santa Catarina
description The goal of this work was to develop an algorithm for computing, over wide ranges of conditions, phase envelopes and three-phase envelopes for reactive systems including the possibility of presence, at equilibrium, of solid phases of the solid-solution type. To our knowledge, algorithms of such sort are not available in the literature. The familiar constant global composition (z) phase envelope (PE) of a multicomponent non-reactive system shows, in the pressure (P) versus temperature (T) plane, a number of curves, such as bubble point, dew point, liquid-liquid and/or solid (S) - fluid (F) (S+F) curves (z is a vector of global component mole fractions). In a given point of the PE (which often includes critical points), a phase of finite size (major phase) of composition z is at equilibrium with a phase of differential size (incipient phase) of composition generally different from z. The PE is the boundary between the homogeneous region and the two-phase (heterogeneous) region. The information on the phase behavior of the multicomponent system of interest becomes more complete if some additional types of lines are plotted within the heterogeneous region, e.g., the three-phase envelopes (3PEs) or three-phase lines (3PLs, for the case of binary systems). A 3PE is the boundary between a two-phase region and a three-phase region. In a point of a 3PE, two phases of finite size are at equilibrium with an incipient phase (still being the global composition equal to z). The set of all PE segments plus all the auxiliary lines (e.g., 3PEs or 3PLs) constitute a quite complete constant z diagram which is named ?isopleth? (IP). For reactive systems, the global composition z changes along the reactive PE (R-PE) and also along the reactive 3PE (R-3PE) or reactive 3PL (R-3PL) (depending on the degrees of freedom (DsOF) of the reactive three-phase system). Each point of any of these curves corresponds to the simultaneous phase and chemical equilibria. Both, in IPs and in reactive IPs (R-IPs) the global mole fractions of the atoms indeed remain constant, while the global mole fractions of the components are constant only for the non-reactive IPs. In a previous work [1], calculation algorithms were developed for all types of lines present in R-IPs involving only fluid phases. In the present work, the possibility of precipitation of solid solutions has been incorporated to the computed R-IPs. The modelling approach proposed by Porras et al. [2] was used to represent the thermodynamic properties of multi-component solid phases (Solid Solution Approach (SSA)). As case study, we have chosen the carbon dioxide (CO2) + 1,2-propylene oxide (PO) + propylene carbonate (PC) system, in which chemical bonds are broken or formed as prescribed by the chemical reaction CO2 + 1,2-propylene oxide ⟷ propylene carbonate. The fluid-state volumetric and phase behavior of this system was modelled through the well-known SRK-EoS coupled to quadratic mixing rules (QMRs). The EoS pure component parameter values, and the values for the binary interaction parameters (considered equal for both the fluid and solid phases), used in the calculations, are given in ref [3], together with the required ?standard state?-related parameters. Other pure component parameters appearing in the solid-solution global fugacity expression were obtained, either from databases, or from reproducing the experimental pure component solid-liquid equilibrium curves. For the chosen reactive system, complete reactive three-phase line segments and reactive phase envelope segments, including the possibility of presence of solid phases that are solid solutions, were computed over wide ranges of conditions using numerical continuation methods. The results are illustrated through the phase diagram, computed for the initial global composition zCO20=0.75, zPO0=0.25 and zPC0=0.0, which is shown in the Graphical Abstract (GA). The obtained results imply the existence of complex patterns of behavior for the computed R-IPs (see insert in GA). The circular marker in the GA is a reactive critical point. Furthermore, a predicted homogeneous solid-solution region is shown in the pressure-temperature plane in the GA. The presence of homogeneous-solid regions in mixture isopleths is of impossible prediction by models that allow precipitation only of solid phases made of pure components (i.e., models that exclude the possibility of solid solutions). The proposed algorithms have been found to be robust and this is ascribed to the applied numerical continuation method.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265989
Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems; VI Iberoamerican Conference on Supercritical Fluids; Los Cocos; Argentina; 2023; 1-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265989
identifier_str_mv Algorithm for calculating phase diagrams at set initial global composition involving fluid and solid-solution phases for multicomponent chemically reactive systems; VI Iberoamerican Conference on Supercritical Fluids; Los Cocos; Argentina; 2023; 1-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://prosciba2023.congresos.unc.edu.ar/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Universidad Nacional de Córdoba
publisher.none.fl_str_mv Universidad Nacional de Córdoba
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781325888978944
score 12.982451