Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study
- Autores
- Gorosito, Irene Laura; Marziali Bermudez, Mariano; Busch, Maria
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Models of habitat variables can be used to find indicators for a quantitative prediction of the likeliness of species occurrence or abundance. Methodological bias due to variable detectability can be critical to properly determine habitat use and, thus, for understanding species ecology, distribution, and requirements for survival. In spite of recent advances in dealing with imperfect detection through detailed modeling, this approach requires large amounts of data and usually leads to larger standard errors in parameter estimates. In this work, we explore the advantages of combining generalized linear models (GLMs) and occupancy models (OMs) for the detection of variables that may be used as indicators of habitat suitability for rodent species. As a case study, we analyzed live trapping data of three rodent species that inhabit agroecosystems at micro- and macrohabitat scales. Both methods provided complementary information: while OMs revealed that some habitat features believed to be selected by studied species actually affected detectability, some effects could only be detected by GLMs. Moreover, for some covariates apparently affecting habitat selection at both scales, comparing results between scales allowed us to determine for which it was actually relevant rather than a reflection of the other. Therefore, we advise applying complementary modeling approaches at multiple scales for habitat selection studies. A variety of outcomes and their implications are thoroughly discussed and may guide other researchers facing similar situations.
Fil: Gorosito, Irene Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Marziali Bermudez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Busch, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
GENERALIZED LINEAR MODELS
MACROHABITAT
MICROHABITAT
OCCUPANCY MODELS
SMALL MAMMAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85703
Ver los metadatos del registro completo
id |
CONICETDig_9c9a31b2ad926db69633ecd8b1aa30c0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85703 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case studyGorosito, Irene LauraMarziali Bermudez, MarianoBusch, MariaGENERALIZED LINEAR MODELSMACROHABITATMICROHABITATOCCUPANCY MODELSSMALL MAMMALhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Models of habitat variables can be used to find indicators for a quantitative prediction of the likeliness of species occurrence or abundance. Methodological bias due to variable detectability can be critical to properly determine habitat use and, thus, for understanding species ecology, distribution, and requirements for survival. In spite of recent advances in dealing with imperfect detection through detailed modeling, this approach requires large amounts of data and usually leads to larger standard errors in parameter estimates. In this work, we explore the advantages of combining generalized linear models (GLMs) and occupancy models (OMs) for the detection of variables that may be used as indicators of habitat suitability for rodent species. As a case study, we analyzed live trapping data of three rodent species that inhabit agroecosystems at micro- and macrohabitat scales. Both methods provided complementary information: while OMs revealed that some habitat features believed to be selected by studied species actually affected detectability, some effects could only be detected by GLMs. Moreover, for some covariates apparently affecting habitat selection at both scales, comparing results between scales allowed us to determine for which it was actually relevant rather than a reflection of the other. Therefore, we advise applying complementary modeling approaches at multiple scales for habitat selection studies. A variety of outcomes and their implications are thoroughly discussed and may guide other researchers facing similar situations.Fil: Gorosito, Irene Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marziali Bermudez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Busch, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85703Gorosito, Irene Laura; Marziali Bermudez, Mariano; Busch, Maria; Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study; Elsevier Science; Ecological Indicators; 85; 5-2018; 1-101470-160XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S1470160X17306271info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2017.10.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:09Zoai:ri.conicet.gov.ar:11336/85703instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:09.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
title |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
spellingShingle |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study Gorosito, Irene Laura GENERALIZED LINEAR MODELS MACROHABITAT MICROHABITAT OCCUPANCY MODELS SMALL MAMMAL |
title_short |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
title_full |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
title_fullStr |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
title_full_unstemmed |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
title_sort |
Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study |
dc.creator.none.fl_str_mv |
Gorosito, Irene Laura Marziali Bermudez, Mariano Busch, Maria |
author |
Gorosito, Irene Laura |
author_facet |
Gorosito, Irene Laura Marziali Bermudez, Mariano Busch, Maria |
author_role |
author |
author2 |
Marziali Bermudez, Mariano Busch, Maria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GENERALIZED LINEAR MODELS MACROHABITAT MICROHABITAT OCCUPANCY MODELS SMALL MAMMAL |
topic |
GENERALIZED LINEAR MODELS MACROHABITAT MICROHABITAT OCCUPANCY MODELS SMALL MAMMAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Models of habitat variables can be used to find indicators for a quantitative prediction of the likeliness of species occurrence or abundance. Methodological bias due to variable detectability can be critical to properly determine habitat use and, thus, for understanding species ecology, distribution, and requirements for survival. In spite of recent advances in dealing with imperfect detection through detailed modeling, this approach requires large amounts of data and usually leads to larger standard errors in parameter estimates. In this work, we explore the advantages of combining generalized linear models (GLMs) and occupancy models (OMs) for the detection of variables that may be used as indicators of habitat suitability for rodent species. As a case study, we analyzed live trapping data of three rodent species that inhabit agroecosystems at micro- and macrohabitat scales. Both methods provided complementary information: while OMs revealed that some habitat features believed to be selected by studied species actually affected detectability, some effects could only be detected by GLMs. Moreover, for some covariates apparently affecting habitat selection at both scales, comparing results between scales allowed us to determine for which it was actually relevant rather than a reflection of the other. Therefore, we advise applying complementary modeling approaches at multiple scales for habitat selection studies. A variety of outcomes and their implications are thoroughly discussed and may guide other researchers facing similar situations. Fil: Gorosito, Irene Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Marziali Bermudez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Busch, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Models of habitat variables can be used to find indicators for a quantitative prediction of the likeliness of species occurrence or abundance. Methodological bias due to variable detectability can be critical to properly determine habitat use and, thus, for understanding species ecology, distribution, and requirements for survival. In spite of recent advances in dealing with imperfect detection through detailed modeling, this approach requires large amounts of data and usually leads to larger standard errors in parameter estimates. In this work, we explore the advantages of combining generalized linear models (GLMs) and occupancy models (OMs) for the detection of variables that may be used as indicators of habitat suitability for rodent species. As a case study, we analyzed live trapping data of three rodent species that inhabit agroecosystems at micro- and macrohabitat scales. Both methods provided complementary information: while OMs revealed that some habitat features believed to be selected by studied species actually affected detectability, some effects could only be detected by GLMs. Moreover, for some covariates apparently affecting habitat selection at both scales, comparing results between scales allowed us to determine for which it was actually relevant rather than a reflection of the other. Therefore, we advise applying complementary modeling approaches at multiple scales for habitat selection studies. A variety of outcomes and their implications are thoroughly discussed and may guide other researchers facing similar situations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85703 Gorosito, Irene Laura; Marziali Bermudez, Mariano; Busch, Maria; Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study; Elsevier Science; Ecological Indicators; 85; 5-2018; 1-10 1470-160X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85703 |
identifier_str_mv |
Gorosito, Irene Laura; Marziali Bermudez, Mariano; Busch, Maria; Advantages of combining generalized linear models and occupancy models to find indicators of habitat selection: Small mammals in agroecosystems as a case study; Elsevier Science; Ecological Indicators; 85; 5-2018; 1-10 1470-160X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S1470160X17306271 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2017.10.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269504266043392 |
score |
13.13397 |