A note of caution on the use of boulders for exposure dating of depositional surfaces

Autores
Schmidt, Silke; Hetzel, Ralf; Kuhlmann, Jan; Mingorance, Francisco; Ramos, Victor Alberto
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Exposure dating of boulders has been widely applied to determine the age of depositional surfaces under the assumption that the pre-depositional nuclide component in most boulders is negligible. Here we present a case study on fluvial terraces at the active mountain front of the eastern Andes, where this assumption is clearly invalid, because sandstone boulders (n=13) from terraces at two sites contain a highly variable inherited 10Be component and have apparent 10Be ages that exceed the age of the respective surface by up to ~90ka. Likewise, boulders from active stream channels (n=5) contain a substantial inherited 10Be component, equivalent to 5-48ka of exposure. The age of the fluvial terraces is well determined by two approaches that allow to correct for the pre-depositional nuclide component: 10Be dating of amalgamated pebbles and 10Be depth profiles on sand samples. At site 1, three terraces have 10Be ages of 3-5ka (T2), 11-13ka (T3), and 16-20ka (T4), which are consistent with the terrace stratigraphy. The age of terrace T3 is confirmed by a calibrated 14C age of 12.61±0.20ka BP obtained from a wood sample. At site 2, terrace T3 has a 10Be age of 13-16ka. The average inherited 10Be concentration of sand grains - determined from depth profiles and stream sediments - is small and equivalent to 1-3ka of exposure. In contrast, the mean inheritance of pebbles and boulders is higher and equivalent to exposure times of ~10ka and ~30ka, respectively. These differences in the pre-depositional nuclide component are related to the different provenance and transport history of sand, pebbles, and boulders. The sand is derived from rapidly eroding Miocene sediments exposed near the mountain front, whereas the pebbles and boulders originate from Triassic sandstones in the internal part of the fold-and-thrust belt. On their way to the mountain front, boulders and pebbles were temporarily stored and irradiated in alluvial fans that are currently reworked. As sediment deposition in intramontane basins and their subsequent excavation is common in the Andes and other fold-and-thrust belts, the presence of pre-depositional nuclide components should be evaluated when applying exposure dating at active mountain fronts.
Fil: Schmidt, Silke. Westfalische Wilhelms Universitat; Alemania
Fil: Hetzel, Ralf. Westfalische Wilhelms Universitat; Alemania
Fil: Kuhlmann, Jan. Westfalische Wilhelms Universitat; Alemania
Fil: Mingorance, Francisco. Universidad Nacional de Cuyo; Argentina
Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Materia
10BE EXPOSURE DATING
AMALGAMATION APPROACH
ANDEAN PRECORDILLERA
FLUVIAL TERRACES
INHERITED NUCLIDE COMPONENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84855

id CONICETDig_9bfb3b0ecb710d54f1c3c725acf5d8be
oai_identifier_str oai:ri.conicet.gov.ar:11336/84855
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A note of caution on the use of boulders for exposure dating of depositional surfacesSchmidt, SilkeHetzel, RalfKuhlmann, JanMingorance, FranciscoRamos, Victor Alberto10BE EXPOSURE DATINGAMALGAMATION APPROACHANDEAN PRECORDILLERAFLUVIAL TERRACESINHERITED NUCLIDE COMPONENThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Exposure dating of boulders has been widely applied to determine the age of depositional surfaces under the assumption that the pre-depositional nuclide component in most boulders is negligible. Here we present a case study on fluvial terraces at the active mountain front of the eastern Andes, where this assumption is clearly invalid, because sandstone boulders (n=13) from terraces at two sites contain a highly variable inherited 10Be component and have apparent 10Be ages that exceed the age of the respective surface by up to ~90ka. Likewise, boulders from active stream channels (n=5) contain a substantial inherited 10Be component, equivalent to 5-48ka of exposure. The age of the fluvial terraces is well determined by two approaches that allow to correct for the pre-depositional nuclide component: 10Be dating of amalgamated pebbles and 10Be depth profiles on sand samples. At site 1, three terraces have 10Be ages of 3-5ka (T2), 11-13ka (T3), and 16-20ka (T4), which are consistent with the terrace stratigraphy. The age of terrace T3 is confirmed by a calibrated 14C age of 12.61±0.20ka BP obtained from a wood sample. At site 2, terrace T3 has a 10Be age of 13-16ka. The average inherited 10Be concentration of sand grains - determined from depth profiles and stream sediments - is small and equivalent to 1-3ka of exposure. In contrast, the mean inheritance of pebbles and boulders is higher and equivalent to exposure times of ~10ka and ~30ka, respectively. These differences in the pre-depositional nuclide component are related to the different provenance and transport history of sand, pebbles, and boulders. The sand is derived from rapidly eroding Miocene sediments exposed near the mountain front, whereas the pebbles and boulders originate from Triassic sandstones in the internal part of the fold-and-thrust belt. On their way to the mountain front, boulders and pebbles were temporarily stored and irradiated in alluvial fans that are currently reworked. As sediment deposition in intramontane basins and their subsequent excavation is common in the Andes and other fold-and-thrust belts, the presence of pre-depositional nuclide components should be evaluated when applying exposure dating at active mountain fronts.Fil: Schmidt, Silke. Westfalische Wilhelms Universitat; AlemaniaFil: Hetzel, Ralf. Westfalische Wilhelms Universitat; AlemaniaFil: Kuhlmann, Jan. Westfalische Wilhelms Universitat; AlemaniaFil: Mingorance, Francisco. Universidad Nacional de Cuyo; ArgentinaFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaElsevier Science2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84855Schmidt, Silke; Hetzel, Ralf; Kuhlmann, Jan; Mingorance, Francisco; Ramos, Victor Alberto; A note of caution on the use of boulders for exposure dating of depositional surfaces; Elsevier Science; Earth and Planetary Science Letters; 302; 1-2; 2-2011; 60-700012-821XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X10007466info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2010.11.039info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:38Zoai:ri.conicet.gov.ar:11336/84855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:38.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A note of caution on the use of boulders for exposure dating of depositional surfaces
title A note of caution on the use of boulders for exposure dating of depositional surfaces
spellingShingle A note of caution on the use of boulders for exposure dating of depositional surfaces
Schmidt, Silke
10BE EXPOSURE DATING
AMALGAMATION APPROACH
ANDEAN PRECORDILLERA
FLUVIAL TERRACES
INHERITED NUCLIDE COMPONENT
title_short A note of caution on the use of boulders for exposure dating of depositional surfaces
title_full A note of caution on the use of boulders for exposure dating of depositional surfaces
title_fullStr A note of caution on the use of boulders for exposure dating of depositional surfaces
title_full_unstemmed A note of caution on the use of boulders for exposure dating of depositional surfaces
title_sort A note of caution on the use of boulders for exposure dating of depositional surfaces
dc.creator.none.fl_str_mv Schmidt, Silke
Hetzel, Ralf
Kuhlmann, Jan
Mingorance, Francisco
Ramos, Victor Alberto
author Schmidt, Silke
author_facet Schmidt, Silke
Hetzel, Ralf
Kuhlmann, Jan
Mingorance, Francisco
Ramos, Victor Alberto
author_role author
author2 Hetzel, Ralf
Kuhlmann, Jan
Mingorance, Francisco
Ramos, Victor Alberto
author2_role author
author
author
author
dc.subject.none.fl_str_mv 10BE EXPOSURE DATING
AMALGAMATION APPROACH
ANDEAN PRECORDILLERA
FLUVIAL TERRACES
INHERITED NUCLIDE COMPONENT
topic 10BE EXPOSURE DATING
AMALGAMATION APPROACH
ANDEAN PRECORDILLERA
FLUVIAL TERRACES
INHERITED NUCLIDE COMPONENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Exposure dating of boulders has been widely applied to determine the age of depositional surfaces under the assumption that the pre-depositional nuclide component in most boulders is negligible. Here we present a case study on fluvial terraces at the active mountain front of the eastern Andes, where this assumption is clearly invalid, because sandstone boulders (n=13) from terraces at two sites contain a highly variable inherited 10Be component and have apparent 10Be ages that exceed the age of the respective surface by up to ~90ka. Likewise, boulders from active stream channels (n=5) contain a substantial inherited 10Be component, equivalent to 5-48ka of exposure. The age of the fluvial terraces is well determined by two approaches that allow to correct for the pre-depositional nuclide component: 10Be dating of amalgamated pebbles and 10Be depth profiles on sand samples. At site 1, three terraces have 10Be ages of 3-5ka (T2), 11-13ka (T3), and 16-20ka (T4), which are consistent with the terrace stratigraphy. The age of terrace T3 is confirmed by a calibrated 14C age of 12.61±0.20ka BP obtained from a wood sample. At site 2, terrace T3 has a 10Be age of 13-16ka. The average inherited 10Be concentration of sand grains - determined from depth profiles and stream sediments - is small and equivalent to 1-3ka of exposure. In contrast, the mean inheritance of pebbles and boulders is higher and equivalent to exposure times of ~10ka and ~30ka, respectively. These differences in the pre-depositional nuclide component are related to the different provenance and transport history of sand, pebbles, and boulders. The sand is derived from rapidly eroding Miocene sediments exposed near the mountain front, whereas the pebbles and boulders originate from Triassic sandstones in the internal part of the fold-and-thrust belt. On their way to the mountain front, boulders and pebbles were temporarily stored and irradiated in alluvial fans that are currently reworked. As sediment deposition in intramontane basins and their subsequent excavation is common in the Andes and other fold-and-thrust belts, the presence of pre-depositional nuclide components should be evaluated when applying exposure dating at active mountain fronts.
Fil: Schmidt, Silke. Westfalische Wilhelms Universitat; Alemania
Fil: Hetzel, Ralf. Westfalische Wilhelms Universitat; Alemania
Fil: Kuhlmann, Jan. Westfalische Wilhelms Universitat; Alemania
Fil: Mingorance, Francisco. Universidad Nacional de Cuyo; Argentina
Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
description Exposure dating of boulders has been widely applied to determine the age of depositional surfaces under the assumption that the pre-depositional nuclide component in most boulders is negligible. Here we present a case study on fluvial terraces at the active mountain front of the eastern Andes, where this assumption is clearly invalid, because sandstone boulders (n=13) from terraces at two sites contain a highly variable inherited 10Be component and have apparent 10Be ages that exceed the age of the respective surface by up to ~90ka. Likewise, boulders from active stream channels (n=5) contain a substantial inherited 10Be component, equivalent to 5-48ka of exposure. The age of the fluvial terraces is well determined by two approaches that allow to correct for the pre-depositional nuclide component: 10Be dating of amalgamated pebbles and 10Be depth profiles on sand samples. At site 1, three terraces have 10Be ages of 3-5ka (T2), 11-13ka (T3), and 16-20ka (T4), which are consistent with the terrace stratigraphy. The age of terrace T3 is confirmed by a calibrated 14C age of 12.61±0.20ka BP obtained from a wood sample. At site 2, terrace T3 has a 10Be age of 13-16ka. The average inherited 10Be concentration of sand grains - determined from depth profiles and stream sediments - is small and equivalent to 1-3ka of exposure. In contrast, the mean inheritance of pebbles and boulders is higher and equivalent to exposure times of ~10ka and ~30ka, respectively. These differences in the pre-depositional nuclide component are related to the different provenance and transport history of sand, pebbles, and boulders. The sand is derived from rapidly eroding Miocene sediments exposed near the mountain front, whereas the pebbles and boulders originate from Triassic sandstones in the internal part of the fold-and-thrust belt. On their way to the mountain front, boulders and pebbles were temporarily stored and irradiated in alluvial fans that are currently reworked. As sediment deposition in intramontane basins and their subsequent excavation is common in the Andes and other fold-and-thrust belts, the presence of pre-depositional nuclide components should be evaluated when applying exposure dating at active mountain fronts.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84855
Schmidt, Silke; Hetzel, Ralf; Kuhlmann, Jan; Mingorance, Francisco; Ramos, Victor Alberto; A note of caution on the use of boulders for exposure dating of depositional surfaces; Elsevier Science; Earth and Planetary Science Letters; 302; 1-2; 2-2011; 60-70
0012-821X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84855
identifier_str_mv Schmidt, Silke; Hetzel, Ralf; Kuhlmann, Jan; Mingorance, Francisco; Ramos, Victor Alberto; A note of caution on the use of boulders for exposure dating of depositional surfaces; Elsevier Science; Earth and Planetary Science Letters; 302; 1-2; 2-2011; 60-70
0012-821X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X10007466
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2010.11.039
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270166392504320
score 13.13397