Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics

Autores
Tchakoua, Theophile; Powell, Andrew D.; Gerrits, Nick; Somers, Mark F.; Doblhoff Dier, Katharina; Busnengo, Heriberto Fabio; Kroes, Geert Jan
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We evaluate the importance of quantum effects on the sticking of H2on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2+ Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Fil: Tchakoua, Theophile. Leiden University; Países Bajos
Fil: Powell, Andrew D.. Leiden University; Países Bajos
Fil: Gerrits, Nick. Leiden University; Países Bajos
Fil: Somers, Mark F.. Leiden University; Países Bajos
Fil: Doblhoff Dier, Katharina. Leiden University; Países Bajos
Fil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Kroes, Geert Jan. Leiden University; Países Bajos
Materia
SUPERFICIES
ABINITIO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/233569

id CONICETDig_9ad975e0111337479aceed9be64c8f8b
oai_identifier_str oai:ri.conicet.gov.ar:11336/233569
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical DynamicsTchakoua, TheophilePowell, Andrew D.Gerrits, NickSomers, Mark F.Doblhoff Dier, KatharinaBusnengo, Heriberto FabioKroes, Geert JanSUPERFICIESABINITIOhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We evaluate the importance of quantum effects on the sticking of H2on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2+ Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.Fil: Tchakoua, Theophile. Leiden University; Países BajosFil: Powell, Andrew D.. Leiden University; Países BajosFil: Gerrits, Nick. Leiden University; Países BajosFil: Somers, Mark F.. Leiden University; Países BajosFil: Doblhoff Dier, Katharina. Leiden University; Países BajosFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Kroes, Geert Jan. Leiden University; Países BajosAmerican Chemical Society2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233569Tchakoua, Theophile; Powell, Andrew D.; Gerrits, Nick; Somers, Mark F.; Doblhoff Dier, Katharina; et al.; Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics; American Chemical Society; Journal of Physical Chemistry C; 127; 11; 3-2023; 5395-54071932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.3c00426info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:12Zoai:ri.conicet.gov.ar:11336/233569instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:12.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
title Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
spellingShingle Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
Tchakoua, Theophile
SUPERFICIES
ABINITIO
title_short Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
title_full Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
title_fullStr Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
title_full_unstemmed Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
title_sort Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics
dc.creator.none.fl_str_mv Tchakoua, Theophile
Powell, Andrew D.
Gerrits, Nick
Somers, Mark F.
Doblhoff Dier, Katharina
Busnengo, Heriberto Fabio
Kroes, Geert Jan
author Tchakoua, Theophile
author_facet Tchakoua, Theophile
Powell, Andrew D.
Gerrits, Nick
Somers, Mark F.
Doblhoff Dier, Katharina
Busnengo, Heriberto Fabio
Kroes, Geert Jan
author_role author
author2 Powell, Andrew D.
Gerrits, Nick
Somers, Mark F.
Doblhoff Dier, Katharina
Busnengo, Heriberto Fabio
Kroes, Geert Jan
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv SUPERFICIES
ABINITIO
topic SUPERFICIES
ABINITIO
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We evaluate the importance of quantum effects on the sticking of H2on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2+ Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Fil: Tchakoua, Theophile. Leiden University; Países Bajos
Fil: Powell, Andrew D.. Leiden University; Países Bajos
Fil: Gerrits, Nick. Leiden University; Países Bajos
Fil: Somers, Mark F.. Leiden University; Países Bajos
Fil: Doblhoff Dier, Katharina. Leiden University; Países Bajos
Fil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Kroes, Geert Jan. Leiden University; Países Bajos
description We evaluate the importance of quantum effects on the sticking of H2on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2+ Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/233569
Tchakoua, Theophile; Powell, Andrew D.; Gerrits, Nick; Somers, Mark F.; Doblhoff Dier, Katharina; et al.; Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics; American Chemical Society; Journal of Physical Chemistry C; 127; 11; 3-2023; 5395-5407
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/233569
identifier_str_mv Tchakoua, Theophile; Powell, Andrew D.; Gerrits, Nick; Somers, Mark F.; Doblhoff Dier, Katharina; et al.; Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics; American Chemical Society; Journal of Physical Chemistry C; 127; 11; 3-2023; 5395-5407
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.3c00426
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614479054110720
score 13.070432