Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition

Autores
Hernando, Marcelo Pablo; Schloss, Irene Ruth; Malanga, Gabriela Fabiana; Almandoz, Gaston Osvaldo; Ferreyra, Gustavo Adolfo; Aguiar, María Belén; Puntarulo, Susana Ángela
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A natural marine phytoplankton assemblage from a coastal environment of Antarctica was experimentally exposed to low salinity sea water (30 vs 34 in the control) during 8. days in order to study their physiological and community responses to hypoosmotic stress conditions. Hypoosmotic conditions favour water influx into the cells, which results in increased turgor pressure and increased oxidative stress. This stress is linked to a number of other cellular toxic processes, including damages to proteins, enzyme inactivation and DNA breakage. Inhibition of the instantaneous growth rate started after 48. h exposure to low salinity, but at the end of experiment, growth was significantly higher in the low than in the normal (control) salinity treatment. Hypoosmotic conditions prevented phytoplankton biomass accumulation, as evidenced by reduced Chlorophyll-a concentrations as compared to the control treatment. However, in terms of cell numbers and species composition, we observed a gradual replacement of big centric by small pennate diatoms, which became dominant by the end of the experiment. In addition, the content of reactive oxygen species (ROS) and 2-thiobarbituric acid-reactive substances (TBARS), which are indicative of oxidative stress, were studied. In the low salinity treatments, ROS concentrations were significantly higher than control values on days 4 and 6, decreasing thereafter to nearly initial values. TBARS content increased during the first 48. h and then decreased until around day 0 values. This coincided with significant increased values of the antioxidants α-tocopherol and β-carotene in low salinity treatments over the control. These results suggest the existence of protection mechanisms against lipid peroxidation, and lead to the conclusion that the response to stress is species-specific, so that at the community level a change in the relative abundance of phytoplankton taxa appears as a response to hypoosmotic conditions. This could have important consequences for the trophic food web dynamics in areas influenced by high fresh water inputs.
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica; Argentina
Fil: Schloss, Irene Ruth. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malanga, Gabriela Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; Argentina
Fil: Almandoz, Gaston Osvaldo. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ferreyra, Gustavo Adolfo. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aguiar, María Belén. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; Argentina
Materia
Antarctica
Dcfh-Da
Diatoms
Meltwater
Αt
Βc
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38822

id CONICETDig_9a9e5f651ff697882af66549c2f1debd
oai_identifier_str oai:ri.conicet.gov.ar:11336/38822
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage compositionHernando, Marcelo PabloSchloss, Irene RuthMalanga, Gabriela FabianaAlmandoz, Gaston OsvaldoFerreyra, Gustavo AdolfoAguiar, María BelénPuntarulo, Susana ÁngelaAntarcticaDcfh-DaDiatomsMeltwaterΑtΒchttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A natural marine phytoplankton assemblage from a coastal environment of Antarctica was experimentally exposed to low salinity sea water (30 vs 34 in the control) during 8. days in order to study their physiological and community responses to hypoosmotic stress conditions. Hypoosmotic conditions favour water influx into the cells, which results in increased turgor pressure and increased oxidative stress. This stress is linked to a number of other cellular toxic processes, including damages to proteins, enzyme inactivation and DNA breakage. Inhibition of the instantaneous growth rate started after 48. h exposure to low salinity, but at the end of experiment, growth was significantly higher in the low than in the normal (control) salinity treatment. Hypoosmotic conditions prevented phytoplankton biomass accumulation, as evidenced by reduced Chlorophyll-a concentrations as compared to the control treatment. However, in terms of cell numbers and species composition, we observed a gradual replacement of big centric by small pennate diatoms, which became dominant by the end of the experiment. In addition, the content of reactive oxygen species (ROS) and 2-thiobarbituric acid-reactive substances (TBARS), which are indicative of oxidative stress, were studied. In the low salinity treatments, ROS concentrations were significantly higher than control values on days 4 and 6, decreasing thereafter to nearly initial values. TBARS content increased during the first 48. h and then decreased until around day 0 values. This coincided with significant increased values of the antioxidants α-tocopherol and β-carotene in low salinity treatments over the control. These results suggest the existence of protection mechanisms against lipid peroxidation, and lead to the conclusion that the response to stress is species-specific, so that at the community level a change in the relative abundance of phytoplankton taxa appears as a response to hypoosmotic conditions. This could have important consequences for the trophic food web dynamics in areas influenced by high fresh water inputs.Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica; ArgentinaFil: Schloss, Irene Ruth. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Malanga, Gabriela Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Almandoz, Gaston Osvaldo. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferreyra, Gustavo Adolfo. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aguiar, María Belén. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; ArgentinaElsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38822Hernando, Marcelo Pablo; Schloss, Irene Ruth; Malanga, Gabriela Fabiana; Almandoz, Gaston Osvaldo; Ferreyra, Gustavo Adolfo; et al.; Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 466; 5-2015; 110-1190022-0981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2015.02.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022098115000428info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:48Zoai:ri.conicet.gov.ar:11336/38822instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:49.136CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
title Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
spellingShingle Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
Hernando, Marcelo Pablo
Antarctica
Dcfh-Da
Diatoms
Meltwater
Αt
Βc
title_short Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
title_full Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
title_fullStr Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
title_full_unstemmed Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
title_sort Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition
dc.creator.none.fl_str_mv Hernando, Marcelo Pablo
Schloss, Irene Ruth
Malanga, Gabriela Fabiana
Almandoz, Gaston Osvaldo
Ferreyra, Gustavo Adolfo
Aguiar, María Belén
Puntarulo, Susana Ángela
author Hernando, Marcelo Pablo
author_facet Hernando, Marcelo Pablo
Schloss, Irene Ruth
Malanga, Gabriela Fabiana
Almandoz, Gaston Osvaldo
Ferreyra, Gustavo Adolfo
Aguiar, María Belén
Puntarulo, Susana Ángela
author_role author
author2 Schloss, Irene Ruth
Malanga, Gabriela Fabiana
Almandoz, Gaston Osvaldo
Ferreyra, Gustavo Adolfo
Aguiar, María Belén
Puntarulo, Susana Ángela
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Antarctica
Dcfh-Da
Diatoms
Meltwater
Αt
Βc
topic Antarctica
Dcfh-Da
Diatoms
Meltwater
Αt
Βc
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A natural marine phytoplankton assemblage from a coastal environment of Antarctica was experimentally exposed to low salinity sea water (30 vs 34 in the control) during 8. days in order to study their physiological and community responses to hypoosmotic stress conditions. Hypoosmotic conditions favour water influx into the cells, which results in increased turgor pressure and increased oxidative stress. This stress is linked to a number of other cellular toxic processes, including damages to proteins, enzyme inactivation and DNA breakage. Inhibition of the instantaneous growth rate started after 48. h exposure to low salinity, but at the end of experiment, growth was significantly higher in the low than in the normal (control) salinity treatment. Hypoosmotic conditions prevented phytoplankton biomass accumulation, as evidenced by reduced Chlorophyll-a concentrations as compared to the control treatment. However, in terms of cell numbers and species composition, we observed a gradual replacement of big centric by small pennate diatoms, which became dominant by the end of the experiment. In addition, the content of reactive oxygen species (ROS) and 2-thiobarbituric acid-reactive substances (TBARS), which are indicative of oxidative stress, were studied. In the low salinity treatments, ROS concentrations were significantly higher than control values on days 4 and 6, decreasing thereafter to nearly initial values. TBARS content increased during the first 48. h and then decreased until around day 0 values. This coincided with significant increased values of the antioxidants α-tocopherol and β-carotene in low salinity treatments over the control. These results suggest the existence of protection mechanisms against lipid peroxidation, and lead to the conclusion that the response to stress is species-specific, so that at the community level a change in the relative abundance of phytoplankton taxa appears as a response to hypoosmotic conditions. This could have important consequences for the trophic food web dynamics in areas influenced by high fresh water inputs.
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica; Argentina
Fil: Schloss, Irene Ruth. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malanga, Gabriela Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; Argentina
Fil: Almandoz, Gaston Osvaldo. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ferreyra, Gustavo Adolfo. Institut Des Sciences de la Mer de Rimouski; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aguiar, María Belén. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Puntarulo, Susana Ángela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; Argentina
description A natural marine phytoplankton assemblage from a coastal environment of Antarctica was experimentally exposed to low salinity sea water (30 vs 34 in the control) during 8. days in order to study their physiological and community responses to hypoosmotic stress conditions. Hypoosmotic conditions favour water influx into the cells, which results in increased turgor pressure and increased oxidative stress. This stress is linked to a number of other cellular toxic processes, including damages to proteins, enzyme inactivation and DNA breakage. Inhibition of the instantaneous growth rate started after 48. h exposure to low salinity, but at the end of experiment, growth was significantly higher in the low than in the normal (control) salinity treatment. Hypoosmotic conditions prevented phytoplankton biomass accumulation, as evidenced by reduced Chlorophyll-a concentrations as compared to the control treatment. However, in terms of cell numbers and species composition, we observed a gradual replacement of big centric by small pennate diatoms, which became dominant by the end of the experiment. In addition, the content of reactive oxygen species (ROS) and 2-thiobarbituric acid-reactive substances (TBARS), which are indicative of oxidative stress, were studied. In the low salinity treatments, ROS concentrations were significantly higher than control values on days 4 and 6, decreasing thereafter to nearly initial values. TBARS content increased during the first 48. h and then decreased until around day 0 values. This coincided with significant increased values of the antioxidants α-tocopherol and β-carotene in low salinity treatments over the control. These results suggest the existence of protection mechanisms against lipid peroxidation, and lead to the conclusion that the response to stress is species-specific, so that at the community level a change in the relative abundance of phytoplankton taxa appears as a response to hypoosmotic conditions. This could have important consequences for the trophic food web dynamics in areas influenced by high fresh water inputs.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38822
Hernando, Marcelo Pablo; Schloss, Irene Ruth; Malanga, Gabriela Fabiana; Almandoz, Gaston Osvaldo; Ferreyra, Gustavo Adolfo; et al.; Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 466; 5-2015; 110-119
0022-0981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38822
identifier_str_mv Hernando, Marcelo Pablo; Schloss, Irene Ruth; Malanga, Gabriela Fabiana; Almandoz, Gaston Osvaldo; Ferreyra, Gustavo Adolfo; et al.; Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 466; 5-2015; 110-119
0022-0981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2015.02.012
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022098115000428
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613959549714432
score 13.070432