Penetration scaling in atomistic simulations of hypervelocity impact
- Autores
- Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.
Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Taylor, Emma A.. The Open University; Reino Unido
Fil: Graham, Giles. Natural History Museum; Reino Unido - Materia
-
Hipervelocity Impact
Cratering
Molecular Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17791
Ver los metadatos del registro completo
id |
CONICETDig_9a429e3cc54c2144f2a4d6b3760554e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17791 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Penetration scaling in atomistic simulations of hypervelocity impactHiggingbotham, AndrewBringa, Eduardo MarcialTaylor, Emma A.Graham, GilesHipervelocity ImpactCrateringMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino UnidoFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Taylor, Emma A.. The Open University; Reino UnidoFil: Graham, Giles. Natural History Museum; Reino UnidoElsevier2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17791Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-2510734-743Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0734743X10001922info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijimpeng.2010.10.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:36Zoai:ri.conicet.gov.ar:11336/17791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:36.995CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Penetration scaling in atomistic simulations of hypervelocity impact |
title |
Penetration scaling in atomistic simulations of hypervelocity impact |
spellingShingle |
Penetration scaling in atomistic simulations of hypervelocity impact Higgingbotham, Andrew Hipervelocity Impact Cratering Molecular Dynamics |
title_short |
Penetration scaling in atomistic simulations of hypervelocity impact |
title_full |
Penetration scaling in atomistic simulations of hypervelocity impact |
title_fullStr |
Penetration scaling in atomistic simulations of hypervelocity impact |
title_full_unstemmed |
Penetration scaling in atomistic simulations of hypervelocity impact |
title_sort |
Penetration scaling in atomistic simulations of hypervelocity impact |
dc.creator.none.fl_str_mv |
Higgingbotham, Andrew Bringa, Eduardo Marcial Taylor, Emma A. Graham, Giles |
author |
Higgingbotham, Andrew |
author_facet |
Higgingbotham, Andrew Bringa, Eduardo Marcial Taylor, Emma A. Graham, Giles |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Taylor, Emma A. Graham, Giles |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Hipervelocity Impact Cratering Molecular Dynamics |
topic |
Hipervelocity Impact Cratering Molecular Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account. Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Taylor, Emma A.. The Open University; Reino Unido Fil: Graham, Giles. Natural History Museum; Reino Unido |
description |
We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17791 Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-251 0734-743X |
url |
http://hdl.handle.net/11336/17791 |
identifier_str_mv |
Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-251 0734-743X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0734743X10001922 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijimpeng.2010.10.034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613534664622080 |
score |
13.070432 |