Penetration scaling in atomistic simulations of hypervelocity impact

Autores
Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.
Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Taylor, Emma A.. The Open University; Reino Unido
Fil: Graham, Giles. Natural History Museum; Reino Unido
Materia
Hipervelocity Impact
Cratering
Molecular Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17791

id CONICETDig_9a429e3cc54c2144f2a4d6b3760554e4
oai_identifier_str oai:ri.conicet.gov.ar:11336/17791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Penetration scaling in atomistic simulations of hypervelocity impactHiggingbotham, AndrewBringa, Eduardo MarcialTaylor, Emma A.Graham, GilesHipervelocity ImpactCrateringMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino UnidoFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Taylor, Emma A.. The Open University; Reino UnidoFil: Graham, Giles. Natural History Museum; Reino UnidoElsevier2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17791Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-2510734-743Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0734743X10001922info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijimpeng.2010.10.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:36Zoai:ri.conicet.gov.ar:11336/17791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:36.995CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Penetration scaling in atomistic simulations of hypervelocity impact
title Penetration scaling in atomistic simulations of hypervelocity impact
spellingShingle Penetration scaling in atomistic simulations of hypervelocity impact
Higgingbotham, Andrew
Hipervelocity Impact
Cratering
Molecular Dynamics
title_short Penetration scaling in atomistic simulations of hypervelocity impact
title_full Penetration scaling in atomistic simulations of hypervelocity impact
title_fullStr Penetration scaling in atomistic simulations of hypervelocity impact
title_full_unstemmed Penetration scaling in atomistic simulations of hypervelocity impact
title_sort Penetration scaling in atomistic simulations of hypervelocity impact
dc.creator.none.fl_str_mv Higgingbotham, Andrew
Bringa, Eduardo Marcial
Taylor, Emma A.
Graham, Giles
author Higgingbotham, Andrew
author_facet Higgingbotham, Andrew
Bringa, Eduardo Marcial
Taylor, Emma A.
Graham, Giles
author_role author
author2 Bringa, Eduardo Marcial
Taylor, Emma A.
Graham, Giles
author2_role author
author
author
dc.subject.none.fl_str_mv Hipervelocity Impact
Cratering
Molecular Dynamics
topic Hipervelocity Impact
Cratering
Molecular Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.
Fil: Higgingbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Taylor, Emma A.. The Open University; Reino Unido
Fil: Graham, Giles. Natural History Museum; Reino Unido
description We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s 1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17791
Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-251
0734-743X
url http://hdl.handle.net/11336/17791
identifier_str_mv Higgingbotham, Andrew; Bringa, Eduardo Marcial; Taylor, Emma A.; Graham, Giles; Penetration scaling in atomistic simulations of hypervelocity impact; Elsevier; International Journal Of Impact Engineering; 38; 4; 11-2010; 247-251
0734-743X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0734743X10001922
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijimpeng.2010.10.034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613534664622080
score 13.070432