Bak-Sneppen model: Local equilibrium and critical value

Autores
Fraiman Borrazás, Daniel Edmundo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.
Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Materia
SELF-ORGANIZED CRITICALITY
EVOLUTIONARY DYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/175981

id CONICETDig_9a2082816c51a436ea93fe36552b0783
oai_identifier_str oai:ri.conicet.gov.ar:11336/175981
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bak-Sneppen model: Local equilibrium and critical valueFraiman Borrazás, Daniel EdmundoSELF-ORGANIZED CRITICALITYEVOLUTIONARY DYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaAmerican Physical Society2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/175981Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-82470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.042123info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:59Zoai:ri.conicet.gov.ar:11336/175981instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:59.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bak-Sneppen model: Local equilibrium and critical value
title Bak-Sneppen model: Local equilibrium and critical value
spellingShingle Bak-Sneppen model: Local equilibrium and critical value
Fraiman Borrazás, Daniel Edmundo
SELF-ORGANIZED CRITICALITY
EVOLUTIONARY DYNAMICS
title_short Bak-Sneppen model: Local equilibrium and critical value
title_full Bak-Sneppen model: Local equilibrium and critical value
title_fullStr Bak-Sneppen model: Local equilibrium and critical value
title_full_unstemmed Bak-Sneppen model: Local equilibrium and critical value
title_sort Bak-Sneppen model: Local equilibrium and critical value
dc.creator.none.fl_str_mv Fraiman Borrazás, Daniel Edmundo
author Fraiman Borrazás, Daniel Edmundo
author_facet Fraiman Borrazás, Daniel Edmundo
author_role author
dc.subject.none.fl_str_mv SELF-ORGANIZED CRITICALITY
EVOLUTIONARY DYNAMICS
topic SELF-ORGANIZED CRITICALITY
EVOLUTIONARY DYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.
Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
description The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/175981
Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-8
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/175981
identifier_str_mv Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-8
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.042123
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042123
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614156933660672
score 13.070432