Bak-Sneppen model: Local equilibrium and critical value
- Autores
- Fraiman Borrazás, Daniel Edmundo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.
Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina - Materia
-
SELF-ORGANIZED CRITICALITY
EVOLUTIONARY DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/175981
Ver los metadatos del registro completo
id |
CONICETDig_9a2082816c51a436ea93fe36552b0783 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/175981 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bak-Sneppen model: Local equilibrium and critical valueFraiman Borrazás, Daniel EdmundoSELF-ORGANIZED CRITICALITYEVOLUTIONARY DYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaAmerican Physical Society2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/175981Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-82470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.042123info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:59Zoai:ri.conicet.gov.ar:11336/175981instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:59.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bak-Sneppen model: Local equilibrium and critical value |
title |
Bak-Sneppen model: Local equilibrium and critical value |
spellingShingle |
Bak-Sneppen model: Local equilibrium and critical value Fraiman Borrazás, Daniel Edmundo SELF-ORGANIZED CRITICALITY EVOLUTIONARY DYNAMICS |
title_short |
Bak-Sneppen model: Local equilibrium and critical value |
title_full |
Bak-Sneppen model: Local equilibrium and critical value |
title_fullStr |
Bak-Sneppen model: Local equilibrium and critical value |
title_full_unstemmed |
Bak-Sneppen model: Local equilibrium and critical value |
title_sort |
Bak-Sneppen model: Local equilibrium and critical value |
dc.creator.none.fl_str_mv |
Fraiman Borrazás, Daniel Edmundo |
author |
Fraiman Borrazás, Daniel Edmundo |
author_facet |
Fraiman Borrazás, Daniel Edmundo |
author_role |
author |
dc.subject.none.fl_str_mv |
SELF-ORGANIZED CRITICALITY EVOLUTIONARY DYNAMICS |
topic |
SELF-ORGANIZED CRITICALITY EVOLUTIONARY DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics. Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina |
description |
The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/175981 Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-8 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/175981 |
identifier_str_mv |
Fraiman Borrazás, Daniel Edmundo; Bak-Sneppen model: Local equilibrium and critical value; American Physical Society; Physical Review E; 97; 4; 4-2018; 1-8 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.97.042123 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.97.042123 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614156933660672 |
score |
13.070432 |