Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA

Autores
Scolini, C.; Dasso, Sergio Ricardo; Rodriguez, L.; Zhukov, A. N.; Poedts, S.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Coronal mass ejections (CMEs) are large-scale eruptions coming from the Sun and transiting into interplanetary space. While it is widely known that they are major drivers of space weather, further knowledge of CME properties in the inner heliosphere is limited by the scarcity of observations at heliocentric distances other than 1 au. In addition, most CMEs are observed in situ by a single spacecraft and in-depth studies require numerical models to complement the few available observations. Aims. We aim to assess the ability of the linear force-free spheromak CME model of the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) to describe the radial evolution of interplanetary CMEs in order to yield new contexts for observational studies. Methods. We modelled one well-studied CME with EUHFORIA, investigating its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterised the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques that are traditionally employed to analyse real in situ data. Results. Our results show that the modelled radial evolution of the mean solar wind and CME values is consistent with the observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding solar wind: the expansion is rapid within 0.4 au and moderate at larger distances. The early rapid expansion was not sufficient to explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry applied in this case. The magnetic field profile indicates a relaxation on the part of the CME structure during propagation, while CME ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. Finally, we report a CME wake that is significantly shorter than what has been suggested by observations. Conclusions. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs, at least close to their centres. Nevertheless, improvements are required to better reproduce the CME radial extension.
Fil: Scolini, C.. Royal Observatory of Belgium; Bélgica
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Rodriguez, L.. Observatorio Pierre Auger; Argentina
Fil: Zhukov, A. N.. Observatorio Pierre Auger; Argentina
Fil: Poedts, S.. Observatorio Pierre Auger; Argentina
Materia
MAGNETOHYDRODYNAMICS (MHD)
SOLAR WIND
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182214

id CONICETDig_99a1ab090c3827ddd67dc41340dce80b
oai_identifier_str oai:ri.conicet.gov.ar:11336/182214
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIAScolini, C.Dasso, Sergio RicardoRodriguez, L.Zhukov, A. N.Poedts, S.MAGNETOHYDRODYNAMICS (MHD)SOLAR WINDSUN: CORONAL MASS EJECTIONS (CMES)SUN: HELIOSPHEREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Coronal mass ejections (CMEs) are large-scale eruptions coming from the Sun and transiting into interplanetary space. While it is widely known that they are major drivers of space weather, further knowledge of CME properties in the inner heliosphere is limited by the scarcity of observations at heliocentric distances other than 1 au. In addition, most CMEs are observed in situ by a single spacecraft and in-depth studies require numerical models to complement the few available observations. Aims. We aim to assess the ability of the linear force-free spheromak CME model of the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) to describe the radial evolution of interplanetary CMEs in order to yield new contexts for observational studies. Methods. We modelled one well-studied CME with EUHFORIA, investigating its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterised the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques that are traditionally employed to analyse real in situ data. Results. Our results show that the modelled radial evolution of the mean solar wind and CME values is consistent with the observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding solar wind: the expansion is rapid within 0.4 au and moderate at larger distances. The early rapid expansion was not sufficient to explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry applied in this case. The magnetic field profile indicates a relaxation on the part of the CME structure during propagation, while CME ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. Finally, we report a CME wake that is significantly shorter than what has been suggested by observations. Conclusions. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs, at least close to their centres. Nevertheless, improvements are required to better reproduce the CME radial extension.Fil: Scolini, C.. Royal Observatory of Belgium; BélgicaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rodriguez, L.. Observatorio Pierre Auger; ArgentinaFil: Zhukov, A. N.. Observatorio Pierre Auger; ArgentinaFil: Poedts, S.. Observatorio Pierre Auger; ArgentinaEDP Sciences2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182214Scolini, C.; Dasso, Sergio Ricardo; Rodriguez, L.; Zhukov, A. N.; Poedts, S.; Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA; EDP Sciences; Astronomy and Astrophysics; 649; 5-2021; 1-200004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202040226info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202040226info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:48Zoai:ri.conicet.gov.ar:11336/182214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:48.328CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
title Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
spellingShingle Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
Scolini, C.
MAGNETOHYDRODYNAMICS (MHD)
SOLAR WIND
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
title_short Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
title_full Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
title_fullStr Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
title_full_unstemmed Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
title_sort Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
dc.creator.none.fl_str_mv Scolini, C.
Dasso, Sergio Ricardo
Rodriguez, L.
Zhukov, A. N.
Poedts, S.
author Scolini, C.
author_facet Scolini, C.
Dasso, Sergio Ricardo
Rodriguez, L.
Zhukov, A. N.
Poedts, S.
author_role author
author2 Dasso, Sergio Ricardo
Rodriguez, L.
Zhukov, A. N.
Poedts, S.
author2_role author
author
author
author
dc.subject.none.fl_str_mv MAGNETOHYDRODYNAMICS (MHD)
SOLAR WIND
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
topic MAGNETOHYDRODYNAMICS (MHD)
SOLAR WIND
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Coronal mass ejections (CMEs) are large-scale eruptions coming from the Sun and transiting into interplanetary space. While it is widely known that they are major drivers of space weather, further knowledge of CME properties in the inner heliosphere is limited by the scarcity of observations at heliocentric distances other than 1 au. In addition, most CMEs are observed in situ by a single spacecraft and in-depth studies require numerical models to complement the few available observations. Aims. We aim to assess the ability of the linear force-free spheromak CME model of the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) to describe the radial evolution of interplanetary CMEs in order to yield new contexts for observational studies. Methods. We modelled one well-studied CME with EUHFORIA, investigating its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterised the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques that are traditionally employed to analyse real in situ data. Results. Our results show that the modelled radial evolution of the mean solar wind and CME values is consistent with the observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding solar wind: the expansion is rapid within 0.4 au and moderate at larger distances. The early rapid expansion was not sufficient to explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry applied in this case. The magnetic field profile indicates a relaxation on the part of the CME structure during propagation, while CME ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. Finally, we report a CME wake that is significantly shorter than what has been suggested by observations. Conclusions. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs, at least close to their centres. Nevertheless, improvements are required to better reproduce the CME radial extension.
Fil: Scolini, C.. Royal Observatory of Belgium; Bélgica
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Rodriguez, L.. Observatorio Pierre Auger; Argentina
Fil: Zhukov, A. N.. Observatorio Pierre Auger; Argentina
Fil: Poedts, S.. Observatorio Pierre Auger; Argentina
description Context. Coronal mass ejections (CMEs) are large-scale eruptions coming from the Sun and transiting into interplanetary space. While it is widely known that they are major drivers of space weather, further knowledge of CME properties in the inner heliosphere is limited by the scarcity of observations at heliocentric distances other than 1 au. In addition, most CMEs are observed in situ by a single spacecraft and in-depth studies require numerical models to complement the few available observations. Aims. We aim to assess the ability of the linear force-free spheromak CME model of the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) to describe the radial evolution of interplanetary CMEs in order to yield new contexts for observational studies. Methods. We modelled one well-studied CME with EUHFORIA, investigating its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterised the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques that are traditionally employed to analyse real in situ data. Results. Our results show that the modelled radial evolution of the mean solar wind and CME values is consistent with the observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding solar wind: the expansion is rapid within 0.4 au and moderate at larger distances. The early rapid expansion was not sufficient to explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry applied in this case. The magnetic field profile indicates a relaxation on the part of the CME structure during propagation, while CME ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. Finally, we report a CME wake that is significantly shorter than what has been suggested by observations. Conclusions. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs, at least close to their centres. Nevertheless, improvements are required to better reproduce the CME radial extension.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182214
Scolini, C.; Dasso, Sergio Ricardo; Rodriguez, L.; Zhukov, A. N.; Poedts, S.; Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA; EDP Sciences; Astronomy and Astrophysics; 649; 5-2021; 1-20
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182214
identifier_str_mv Scolini, C.; Dasso, Sergio Ricardo; Rodriguez, L.; Zhukov, A. N.; Poedts, S.; Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA; EDP Sciences; Astronomy and Astrophysics; 649; 5-2021; 1-20
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202040226
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202040226
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614257589616640
score 13.070432