Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus

Autores
Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; Ramirez Amaya, Victor; Lisanby, Sarah H.; McNaughton, Bruce L.; Barnes, Carol A.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.
Fil: Thome, Alexander. University of Arizona; Estados Unidos
Fil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; Canadá
Fil: Ellmore, Timothy M.. The City College of New York; Estados Unidos
Fil: Chawla, Monica K.. University of Arizona; Estados Unidos
Fil: Lipa, Peter. University of Arizona; Estados Unidos
Fil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; México
Fil: Lisanby, Sarah H.. University of Duke; Estados Unidos
Fil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados Unidos
Fil: Barnes, Carol A.. University of Arizona; Estados Unidos
Materia
NEURAL CODING
NEUROETHOLOGY
PRIMATE
RODENT
SPATIAL COGNITION
VIRTUAL REALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64055

id CONICETDig_991d62b715722107dd55120a6a7a4620
oai_identifier_str oai:ri.conicet.gov.ar:11336/64055
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampusThome, AlexanderMarrone, Diano F.Ellmore, Timothy M.Chawla, Monica K.Lipa, PeterRamirez Amaya, VictorLisanby, Sarah H.McNaughton, Bruce L.Barnes, Carol A.NEURAL CODINGNEUROETHOLOGYPRIMATERODENTSPATIAL COGNITIONVIRTUAL REALITYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.Fil: Thome, Alexander. University of Arizona; Estados UnidosFil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; CanadáFil: Ellmore, Timothy M.. The City College of New York; Estados UnidosFil: Chawla, Monica K.. University of Arizona; Estados UnidosFil: Lipa, Peter. University of Arizona; Estados UnidosFil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; MéxicoFil: Lisanby, Sarah H.. University of Duke; Estados UnidosFil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados UnidosFil: Barnes, Carol A.. University of Arizona; Estados UnidosSociety for Neuroscience2017-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64055Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-28010270-64741529-2401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.3057-16.2017info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/10/2795info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:26Zoai:ri.conicet.gov.ar:11336/64055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:27.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
title Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
spellingShingle Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
Thome, Alexander
NEURAL CODING
NEUROETHOLOGY
PRIMATE
RODENT
SPATIAL COGNITION
VIRTUAL REALITY
title_short Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
title_full Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
title_fullStr Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
title_full_unstemmed Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
title_sort Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
dc.creator.none.fl_str_mv Thome, Alexander
Marrone, Diano F.
Ellmore, Timothy M.
Chawla, Monica K.
Lipa, Peter
Ramirez Amaya, Victor
Lisanby, Sarah H.
McNaughton, Bruce L.
Barnes, Carol A.
author Thome, Alexander
author_facet Thome, Alexander
Marrone, Diano F.
Ellmore, Timothy M.
Chawla, Monica K.
Lipa, Peter
Ramirez Amaya, Victor
Lisanby, Sarah H.
McNaughton, Bruce L.
Barnes, Carol A.
author_role author
author2 Marrone, Diano F.
Ellmore, Timothy M.
Chawla, Monica K.
Lipa, Peter
Ramirez Amaya, Victor
Lisanby, Sarah H.
McNaughton, Bruce L.
Barnes, Carol A.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv NEURAL CODING
NEUROETHOLOGY
PRIMATE
RODENT
SPATIAL COGNITION
VIRTUAL REALITY
topic NEURAL CODING
NEUROETHOLOGY
PRIMATE
RODENT
SPATIAL COGNITION
VIRTUAL REALITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.
Fil: Thome, Alexander. University of Arizona; Estados Unidos
Fil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; Canadá
Fil: Ellmore, Timothy M.. The City College of New York; Estados Unidos
Fil: Chawla, Monica K.. University of Arizona; Estados Unidos
Fil: Lipa, Peter. University of Arizona; Estados Unidos
Fil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; México
Fil: Lisanby, Sarah H.. University of Duke; Estados Unidos
Fil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados Unidos
Fil: Barnes, Carol A.. University of Arizona; Estados Unidos
description Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64055
Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-2801
0270-6474
1529-2401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64055
identifier_str_mv Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-2801
0270-6474
1529-2401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.3057-16.2017
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/10/2795
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Neuroscience
publisher.none.fl_str_mv Society for Neuroscience
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613104387751936
score 13.070432