Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus
- Autores
- Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; Ramirez Amaya, Victor; Lisanby, Sarah H.; McNaughton, Bruce L.; Barnes, Carol A.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.
Fil: Thome, Alexander. University of Arizona; Estados Unidos
Fil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; Canadá
Fil: Ellmore, Timothy M.. The City College of New York; Estados Unidos
Fil: Chawla, Monica K.. University of Arizona; Estados Unidos
Fil: Lipa, Peter. University of Arizona; Estados Unidos
Fil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; México
Fil: Lisanby, Sarah H.. University of Duke; Estados Unidos
Fil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados Unidos
Fil: Barnes, Carol A.. University of Arizona; Estados Unidos - Materia
-
NEURAL CODING
NEUROETHOLOGY
PRIMATE
RODENT
SPATIAL COGNITION
VIRTUAL REALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64055
Ver los metadatos del registro completo
id |
CONICETDig_991d62b715722107dd55120a6a7a4620 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64055 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampusThome, AlexanderMarrone, Diano F.Ellmore, Timothy M.Chawla, Monica K.Lipa, PeterRamirez Amaya, VictorLisanby, Sarah H.McNaughton, Bruce L.Barnes, Carol A.NEURAL CODINGNEUROETHOLOGYPRIMATERODENTSPATIAL COGNITIONVIRTUAL REALITYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.Fil: Thome, Alexander. University of Arizona; Estados UnidosFil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; CanadáFil: Ellmore, Timothy M.. The City College of New York; Estados UnidosFil: Chawla, Monica K.. University of Arizona; Estados UnidosFil: Lipa, Peter. University of Arizona; Estados UnidosFil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; MéxicoFil: Lisanby, Sarah H.. University of Duke; Estados UnidosFil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados UnidosFil: Barnes, Carol A.. University of Arizona; Estados UnidosSociety for Neuroscience2017-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64055Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-28010270-64741529-2401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.3057-16.2017info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/10/2795info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:26Zoai:ri.conicet.gov.ar:11336/64055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:27.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
title |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
spellingShingle |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus Thome, Alexander NEURAL CODING NEUROETHOLOGY PRIMATE RODENT SPATIAL COGNITION VIRTUAL REALITY |
title_short |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
title_full |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
title_fullStr |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
title_full_unstemmed |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
title_sort |
Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus |
dc.creator.none.fl_str_mv |
Thome, Alexander Marrone, Diano F. Ellmore, Timothy M. Chawla, Monica K. Lipa, Peter Ramirez Amaya, Victor Lisanby, Sarah H. McNaughton, Bruce L. Barnes, Carol A. |
author |
Thome, Alexander |
author_facet |
Thome, Alexander Marrone, Diano F. Ellmore, Timothy M. Chawla, Monica K. Lipa, Peter Ramirez Amaya, Victor Lisanby, Sarah H. McNaughton, Bruce L. Barnes, Carol A. |
author_role |
author |
author2 |
Marrone, Diano F. Ellmore, Timothy M. Chawla, Monica K. Lipa, Peter Ramirez Amaya, Victor Lisanby, Sarah H. McNaughton, Bruce L. Barnes, Carol A. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
NEURAL CODING NEUROETHOLOGY PRIMATE RODENT SPATIAL COGNITION VIRTUAL REALITY |
topic |
NEURAL CODING NEUROETHOLOGY PRIMATE RODENT SPATIAL COGNITION VIRTUAL REALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories. Fil: Thome, Alexander. University of Arizona; Estados Unidos Fil: Marrone, Diano F.. University of Arizona; Estados Unidos. Wilfrid Laurier University; Canadá Fil: Ellmore, Timothy M.. The City College of New York; Estados Unidos Fil: Chawla, Monica K.. University of Arizona; Estados Unidos Fil: Lipa, Peter. University of Arizona; Estados Unidos Fil: Ramirez Amaya, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Universidad Autónoma de Queretaro; México Fil: Lisanby, Sarah H.. University of Duke; Estados Unidos Fil: McNaughton, Bruce L.. The University of Lethbridge; Canadá. University of California at Irvine; Estados Unidos Fil: Barnes, Carol A.. University of Arizona; Estados Unidos |
description |
Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64055 Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-2801 0270-6474 1529-2401 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64055 |
identifier_str_mv |
Thome, Alexander; Marrone, Diano F.; Ellmore, Timothy M.; Chawla, Monica K.; Lipa, Peter; et al.; Evidence for an evolutionarily conserved memory coding scheme in the mammalian hippocampus; Society for Neuroscience; Journal of Neuroscience; 37; 10; 7-3-2017; 2795-2801 0270-6474 1529-2401 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.3057-16.2017 info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/37/10/2795 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Neuroscience |
publisher.none.fl_str_mv |
Society for Neuroscience |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613104387751936 |
score |
13.070432 |