Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks
- Autores
- Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; Sánchez, Pablo Javier
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete.
Fil: Papadrakakis, M.. Athens University; Grecia
Fil: Papadopoulus, V.. Athens University; Grecia
Fil: Lagaros, N.D.. Athens University; Grecia
Fil: Oliver, J.. Universidad Politecnica de Catalunya; España
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Reliability Analysis
Fragility Curves;
Vulnerability
Monte Carlo Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25398
Ver los metadatos del registro completo
id |
CONICETDig_98c27772db9a2793e4e686cf2b75799c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25398 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural NetworksPapadrakakis, M.Papadopoulus, V.Lagaros, N.D.Oliver, J.Huespe, Alfredo EdmundoSánchez, Pablo JavierReliability AnalysisFragility Curves;VulnerabilityMonte Carlo SimulationProbabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete.Fil: Papadrakakis, M.. Athens University; GreciaFil: Papadopoulus, V.. Athens University; GreciaFil: Lagaros, N.D.. Athens University; GreciaFil: Oliver, J.. Universidad Politecnica de Catalunya; EspañaFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Science2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25398Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-2350167-4730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.strusafe.2006.11.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167473006000713info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:09Zoai:ri.conicet.gov.ar:11336/25398instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:10.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
title |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
spellingShingle |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks Papadrakakis, M. Reliability Analysis Fragility Curves; Vulnerability Monte Carlo Simulation |
title_short |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
title_full |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
title_fullStr |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
title_full_unstemmed |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
title_sort |
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks |
dc.creator.none.fl_str_mv |
Papadrakakis, M. Papadopoulus, V. Lagaros, N.D. Oliver, J. Huespe, Alfredo Edmundo Sánchez, Pablo Javier |
author |
Papadrakakis, M. |
author_facet |
Papadrakakis, M. Papadopoulus, V. Lagaros, N.D. Oliver, J. Huespe, Alfredo Edmundo Sánchez, Pablo Javier |
author_role |
author |
author2 |
Papadopoulus, V. Lagaros, N.D. Oliver, J. Huespe, Alfredo Edmundo Sánchez, Pablo Javier |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Reliability Analysis Fragility Curves; Vulnerability Monte Carlo Simulation |
topic |
Reliability Analysis Fragility Curves; Vulnerability Monte Carlo Simulation |
dc.description.none.fl_txt_mv |
Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete. Fil: Papadrakakis, M.. Athens University; Grecia Fil: Papadopoulus, V.. Athens University; Grecia Fil: Lagaros, N.D.. Athens University; Grecia Fil: Oliver, J.. Universidad Politecnica de Catalunya; España Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25398 Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-235 0167-4730 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25398 |
identifier_str_mv |
Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-235 0167-4730 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.strusafe.2006.11.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167473006000713 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613016793907200 |
score |
13.070432 |