Approximate analytical solution to Reynolds equation for finite length journal bearings
- Autores
- Vignolo, Gustavo Gabriel; Barilá, Daniel O.; Quinzani, Lidia Maria
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The understanding of the behavior of hydrodynamic bearings requires the analysis of the fluid film between two solid surfaces in relative motion. The differential equation that governs the movement of this fluid, called the Reynolds equation, arises from the integration over the film thickness of the continuity equation, previously combined with the NavierStokes equation. An order of magnitude analysis, which is based on the relative value of the dimensions of the bearing, produces two dimensionless numbers that govern the behavior of the system: the square of the aspect ratio, length over diameter (L/D)2, and the eccentricity ratio (η). An analytical solution of the Reynolds equation can only be obtained for particular situations as, for example, the isothermal flow of Newtonian fluids and values of L/D→0 or L/D→∞. For other conditions, the equation must be solved numerically. The present work proposes an analytical approximate solution of the Reynolds equation for isothermal finite length journal bearings by means of the regular perturbation method. (L/D)2 is used as the perturbation parameter. The novelty of the method lays in the treatment of the Ocvirk number as an expansible parameter. The zero-order solution of the Reynolds equation (obtained for L/D→0), which matches the Ocvirk solution, may be used to describe the behavior of finite length journal bearings, up to L/D∼1/81/4, and relatively small eccentricities. The first-order solution obtained with the proposed method gives an analytical tool that extends the description of pressure and shear-stress fields up to L/D∼1/2 and η∼1/2 (or combinations of larger eccentricities with smaller aspect ratios, or vice versa). Moreover, the friction force and load-carrying capacity are accurately described by the proposed method up to L/D∼1 and η very near to 1.
Fil: Vignolo, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Barilá, Daniel O.. Universidad Nacional de la Patagonia; Argentina
Fil: Quinzani, Lidia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Hydrodynamic Lubrication
Journal Bearings
Regular Perturbation
Reynolds Equation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56209
Ver los metadatos del registro completo
id |
CONICETDig_975743fa7672cae714bddae2b27167d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56209 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximate analytical solution to Reynolds equation for finite length journal bearingsVignolo, Gustavo GabrielBarilá, Daniel O.Quinzani, Lidia MariaHydrodynamic LubricationJournal BearingsRegular PerturbationReynolds Equationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The understanding of the behavior of hydrodynamic bearings requires the analysis of the fluid film between two solid surfaces in relative motion. The differential equation that governs the movement of this fluid, called the Reynolds equation, arises from the integration over the film thickness of the continuity equation, previously combined with the NavierStokes equation. An order of magnitude analysis, which is based on the relative value of the dimensions of the bearing, produces two dimensionless numbers that govern the behavior of the system: the square of the aspect ratio, length over diameter (L/D)2, and the eccentricity ratio (η). An analytical solution of the Reynolds equation can only be obtained for particular situations as, for example, the isothermal flow of Newtonian fluids and values of L/D→0 or L/D→∞. For other conditions, the equation must be solved numerically. The present work proposes an analytical approximate solution of the Reynolds equation for isothermal finite length journal bearings by means of the regular perturbation method. (L/D)2 is used as the perturbation parameter. The novelty of the method lays in the treatment of the Ocvirk number as an expansible parameter. The zero-order solution of the Reynolds equation (obtained for L/D→0), which matches the Ocvirk solution, may be used to describe the behavior of finite length journal bearings, up to L/D∼1/81/4, and relatively small eccentricities. The first-order solution obtained with the proposed method gives an analytical tool that extends the description of pressure and shear-stress fields up to L/D∼1/2 and η∼1/2 (or combinations of larger eccentricities with smaller aspect ratios, or vice versa). Moreover, the friction force and load-carrying capacity are accurately described by the proposed method up to L/D∼1 and η very near to 1.Fil: Vignolo, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Barilá, Daniel O.. Universidad Nacional de la Patagonia; ArgentinaFil: Quinzani, Lidia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56209Vignolo, Gustavo Gabriel; Barilá, Daniel O.; Quinzani, Lidia Maria; Approximate analytical solution to Reynolds equation for finite length journal bearings; Elsevier; Tribology International; 44; 10; 9-2011; 1089-10990301-679XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.triboint.2011.03.020info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301679X11000752info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:19Zoai:ri.conicet.gov.ar:11336/56209instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:19.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
title |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
spellingShingle |
Approximate analytical solution to Reynolds equation for finite length journal bearings Vignolo, Gustavo Gabriel Hydrodynamic Lubrication Journal Bearings Regular Perturbation Reynolds Equation |
title_short |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
title_full |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
title_fullStr |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
title_full_unstemmed |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
title_sort |
Approximate analytical solution to Reynolds equation for finite length journal bearings |
dc.creator.none.fl_str_mv |
Vignolo, Gustavo Gabriel Barilá, Daniel O. Quinzani, Lidia Maria |
author |
Vignolo, Gustavo Gabriel |
author_facet |
Vignolo, Gustavo Gabriel Barilá, Daniel O. Quinzani, Lidia Maria |
author_role |
author |
author2 |
Barilá, Daniel O. Quinzani, Lidia Maria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hydrodynamic Lubrication Journal Bearings Regular Perturbation Reynolds Equation |
topic |
Hydrodynamic Lubrication Journal Bearings Regular Perturbation Reynolds Equation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The understanding of the behavior of hydrodynamic bearings requires the analysis of the fluid film between two solid surfaces in relative motion. The differential equation that governs the movement of this fluid, called the Reynolds equation, arises from the integration over the film thickness of the continuity equation, previously combined with the NavierStokes equation. An order of magnitude analysis, which is based on the relative value of the dimensions of the bearing, produces two dimensionless numbers that govern the behavior of the system: the square of the aspect ratio, length over diameter (L/D)2, and the eccentricity ratio (η). An analytical solution of the Reynolds equation can only be obtained for particular situations as, for example, the isothermal flow of Newtonian fluids and values of L/D→0 or L/D→∞. For other conditions, the equation must be solved numerically. The present work proposes an analytical approximate solution of the Reynolds equation for isothermal finite length journal bearings by means of the regular perturbation method. (L/D)2 is used as the perturbation parameter. The novelty of the method lays in the treatment of the Ocvirk number as an expansible parameter. The zero-order solution of the Reynolds equation (obtained for L/D→0), which matches the Ocvirk solution, may be used to describe the behavior of finite length journal bearings, up to L/D∼1/81/4, and relatively small eccentricities. The first-order solution obtained with the proposed method gives an analytical tool that extends the description of pressure and shear-stress fields up to L/D∼1/2 and η∼1/2 (or combinations of larger eccentricities with smaller aspect ratios, or vice versa). Moreover, the friction force and load-carrying capacity are accurately described by the proposed method up to L/D∼1 and η very near to 1. Fil: Vignolo, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Barilá, Daniel O.. Universidad Nacional de la Patagonia; Argentina Fil: Quinzani, Lidia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
The understanding of the behavior of hydrodynamic bearings requires the analysis of the fluid film between two solid surfaces in relative motion. The differential equation that governs the movement of this fluid, called the Reynolds equation, arises from the integration over the film thickness of the continuity equation, previously combined with the NavierStokes equation. An order of magnitude analysis, which is based on the relative value of the dimensions of the bearing, produces two dimensionless numbers that govern the behavior of the system: the square of the aspect ratio, length over diameter (L/D)2, and the eccentricity ratio (η). An analytical solution of the Reynolds equation can only be obtained for particular situations as, for example, the isothermal flow of Newtonian fluids and values of L/D→0 or L/D→∞. For other conditions, the equation must be solved numerically. The present work proposes an analytical approximate solution of the Reynolds equation for isothermal finite length journal bearings by means of the regular perturbation method. (L/D)2 is used as the perturbation parameter. The novelty of the method lays in the treatment of the Ocvirk number as an expansible parameter. The zero-order solution of the Reynolds equation (obtained for L/D→0), which matches the Ocvirk solution, may be used to describe the behavior of finite length journal bearings, up to L/D∼1/81/4, and relatively small eccentricities. The first-order solution obtained with the proposed method gives an analytical tool that extends the description of pressure and shear-stress fields up to L/D∼1/2 and η∼1/2 (or combinations of larger eccentricities with smaller aspect ratios, or vice versa). Moreover, the friction force and load-carrying capacity are accurately described by the proposed method up to L/D∼1 and η very near to 1. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56209 Vignolo, Gustavo Gabriel; Barilá, Daniel O.; Quinzani, Lidia Maria; Approximate analytical solution to Reynolds equation for finite length journal bearings; Elsevier; Tribology International; 44; 10; 9-2011; 1089-1099 0301-679X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56209 |
identifier_str_mv |
Vignolo, Gustavo Gabriel; Barilá, Daniel O.; Quinzani, Lidia Maria; Approximate analytical solution to Reynolds equation for finite length journal bearings; Elsevier; Tribology International; 44; 10; 9-2011; 1089-1099 0301-679X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.triboint.2011.03.020 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301679X11000752 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269150896979968 |
score |
13.13397 |