Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?
- Autores
- Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley. L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, Sandra Myrna; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malh, Y.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- High‐resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher‐level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.
Fil: Doughty, Christopher E.. University of Arizona; Estados Unidos
Fil: Santos-Andrade, P. E.. Universidad San Antonio Abad, Cusco; Perú
Fil: Goldsmith, G. R.. Paul Scherrer Institute, Villigen, Switzerland; Suiza
Fil: Blonder, B.. University of Oxford; Reino Unido
Fil: Shenkin, A.. University of Oxford; Reino Unido
Fil: Bentley. L. P.. Sonoma State University; Estados Unidos. University of Oxford; Reino Unido
Fil: Chavana-Bryant, C.. University of Oxford; Reino Unido
Fil: Huaraca-Huasco, W.. University of Oxford; Reino Unido. Universidad San Antonio Abad, Cusco; Perú
Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Salinas, N.. Universidad San Antonio Abad, Cusco; Perú. Pontificia Universidad Católica de Perú; Perú
Fil: Enquist, B. J.. Arizona State University; Estados Unidos. Santa Fe Institute; Estados Unidos
Fil: Martin, R.. Carnegie Institution for Science; Estados Unidos
Fil: Asner, G. P.. Carnegie Institution for Science; Estados Unidos
Fil: Malh, Y.. University of Oxford; Reino Unido - Materia
-
LEAF REFLECTANCE
LEAF PROPERTIES
HIGH-RESOLUTION SPECTROSCOPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/45989
Ver los metadatos del registro completo
id |
CONICETDig_970600c4b3f722101db95beba58b7d52 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/45989 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?Doughty, Christopher E.Santos-Andrade, P. E.Goldsmith, G. R.Blonder, B.Shenkin, A.Bentley. L. P.Chavana-Bryant, C.Huaraca-Huasco, W.Díaz, Sandra MyrnaSalinas, N.Enquist, B. J.Martin, R.Asner, G. P.Malh, Y.LEAF REFLECTANCELEAF PROPERTIESHIGH-RESOLUTION SPECTROSCOPYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1High‐resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher‐level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.Fil: Doughty, Christopher E.. University of Arizona; Estados UnidosFil: Santos-Andrade, P. E.. Universidad San Antonio Abad, Cusco; PerúFil: Goldsmith, G. R.. Paul Scherrer Institute, Villigen, Switzerland; SuizaFil: Blonder, B.. University of Oxford; Reino UnidoFil: Shenkin, A.. University of Oxford; Reino UnidoFil: Bentley. L. P.. Sonoma State University; Estados Unidos. University of Oxford; Reino UnidoFil: Chavana-Bryant, C.. University of Oxford; Reino UnidoFil: Huaraca-Huasco, W.. University of Oxford; Reino Unido. Universidad San Antonio Abad, Cusco; PerúFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Salinas, N.. Universidad San Antonio Abad, Cusco; Perú. Pontificia Universidad Católica de Perú; PerúFil: Enquist, B. J.. Arizona State University; Estados Unidos. Santa Fe Institute; Estados UnidosFil: Martin, R.. Carnegie Institution for Science; Estados UnidosFil: Asner, G. P.. Carnegie Institution for Science; Estados UnidosFil: Malh, Y.. University of Oxford; Reino UnidoAgu Publications2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45989Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; et al.; Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?; Agu Publications; Journal of Geophysical Research; 122; 11; 11-2017; 2952-29652169-89532169-8961CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bit.ly/2Lo5i5ninfo:eu-repo/semantics/altIdentifier/doi/10.1002/2017JG003883info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:59Zoai:ri.conicet.gov.ar:11336/45989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:59.582CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
title |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
spellingShingle |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? Doughty, Christopher E. LEAF REFLECTANCE LEAF PROPERTIES HIGH-RESOLUTION SPECTROSCOPY |
title_short |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
title_full |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
title_fullStr |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
title_full_unstemmed |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
title_sort |
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient? |
dc.creator.none.fl_str_mv |
Doughty, Christopher E. Santos-Andrade, P. E. Goldsmith, G. R. Blonder, B. Shenkin, A. Bentley. L. P. Chavana-Bryant, C. Huaraca-Huasco, W. Díaz, Sandra Myrna Salinas, N. Enquist, B. J. Martin, R. Asner, G. P. Malh, Y. |
author |
Doughty, Christopher E. |
author_facet |
Doughty, Christopher E. Santos-Andrade, P. E. Goldsmith, G. R. Blonder, B. Shenkin, A. Bentley. L. P. Chavana-Bryant, C. Huaraca-Huasco, W. Díaz, Sandra Myrna Salinas, N. Enquist, B. J. Martin, R. Asner, G. P. Malh, Y. |
author_role |
author |
author2 |
Santos-Andrade, P. E. Goldsmith, G. R. Blonder, B. Shenkin, A. Bentley. L. P. Chavana-Bryant, C. Huaraca-Huasco, W. Díaz, Sandra Myrna Salinas, N. Enquist, B. J. Martin, R. Asner, G. P. Malh, Y. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
LEAF REFLECTANCE LEAF PROPERTIES HIGH-RESOLUTION SPECTROSCOPY |
topic |
LEAF REFLECTANCE LEAF PROPERTIES HIGH-RESOLUTION SPECTROSCOPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
High‐resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher‐level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy. Fil: Doughty, Christopher E.. University of Arizona; Estados Unidos Fil: Santos-Andrade, P. E.. Universidad San Antonio Abad, Cusco; Perú Fil: Goldsmith, G. R.. Paul Scherrer Institute, Villigen, Switzerland; Suiza Fil: Blonder, B.. University of Oxford; Reino Unido Fil: Shenkin, A.. University of Oxford; Reino Unido Fil: Bentley. L. P.. Sonoma State University; Estados Unidos. University of Oxford; Reino Unido Fil: Chavana-Bryant, C.. University of Oxford; Reino Unido Fil: Huaraca-Huasco, W.. University of Oxford; Reino Unido. Universidad San Antonio Abad, Cusco; Perú Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Salinas, N.. Universidad San Antonio Abad, Cusco; Perú. Pontificia Universidad Católica de Perú; Perú Fil: Enquist, B. J.. Arizona State University; Estados Unidos. Santa Fe Institute; Estados Unidos Fil: Martin, R.. Carnegie Institution for Science; Estados Unidos Fil: Asner, G. P.. Carnegie Institution for Science; Estados Unidos Fil: Malh, Y.. University of Oxford; Reino Unido |
description |
High‐resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher‐level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/45989 Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; et al.; Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?; Agu Publications; Journal of Geophysical Research; 122; 11; 11-2017; 2952-2965 2169-8953 2169-8961 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/45989 |
identifier_str_mv |
Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; et al.; Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?; Agu Publications; Journal of Geophysical Research; 122; 11; 11-2017; 2952-2965 2169-8953 2169-8961 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2Lo5i5n info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JG003883 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Agu Publications |
publisher.none.fl_str_mv |
Agu Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614195327270912 |
score |
13.070432 |