Proximate mechanisms determining size variability in natterjack toads

Autores
Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; Tejedo, M.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.
Fil: Sinsch, U.. Universitat Koblenz; Alemania
Fil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oromi, N.. Universidad de Lleida; España
Fil: Leskovar, C.. Universitat Koblenz; Alemania
Fil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España
Fil: Tejedo, M.. Universidad de Lleida; España
Materia
Age at Maturity
Amphibia
Anura
Bergmann'S Rule
Life-History Traits
Longevity
Potential Reproductive Lifespan
Skeletochronology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57579

id CONICETDig_961b98c12634dd6b9a70c27f34f35161
oai_identifier_str oai:ri.conicet.gov.ar:11336/57579
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proximate mechanisms determining size variability in natterjack toadsSinsch, U.Marangoni, FedericoOromi, N.Leskovar, C.Sanuy, D.Tejedo, M.Age at MaturityAmphibiaAnuraBergmann'S RuleLife-History TraitsLongevityPotential Reproductive LifespanSkeletochronologyhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.Fil: Sinsch, U.. Universitat Koblenz; AlemaniaFil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oromi, N.. Universidad de Lleida; EspañaFil: Leskovar, C.. Universitat Koblenz; AlemaniaFil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Tejedo, M.. Universidad de Lleida; EspañaWiley Blackwell Publishing, Inc2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57579Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-2810952-83691469-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.2010.00702.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1469-7998.2010.00702.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:57Zoai:ri.conicet.gov.ar:11336/57579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:57.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proximate mechanisms determining size variability in natterjack toads
title Proximate mechanisms determining size variability in natterjack toads
spellingShingle Proximate mechanisms determining size variability in natterjack toads
Sinsch, U.
Age at Maturity
Amphibia
Anura
Bergmann'S Rule
Life-History Traits
Longevity
Potential Reproductive Lifespan
Skeletochronology
title_short Proximate mechanisms determining size variability in natterjack toads
title_full Proximate mechanisms determining size variability in natterjack toads
title_fullStr Proximate mechanisms determining size variability in natterjack toads
title_full_unstemmed Proximate mechanisms determining size variability in natterjack toads
title_sort Proximate mechanisms determining size variability in natterjack toads
dc.creator.none.fl_str_mv Sinsch, U.
Marangoni, Federico
Oromi, N.
Leskovar, C.
Sanuy, D.
Tejedo, M.
author Sinsch, U.
author_facet Sinsch, U.
Marangoni, Federico
Oromi, N.
Leskovar, C.
Sanuy, D.
Tejedo, M.
author_role author
author2 Marangoni, Federico
Oromi, N.
Leskovar, C.
Sanuy, D.
Tejedo, M.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Age at Maturity
Amphibia
Anura
Bergmann'S Rule
Life-History Traits
Longevity
Potential Reproductive Lifespan
Skeletochronology
topic Age at Maturity
Amphibia
Anura
Bergmann'S Rule
Life-History Traits
Longevity
Potential Reproductive Lifespan
Skeletochronology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.
Fil: Sinsch, U.. Universitat Koblenz; Alemania
Fil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oromi, N.. Universidad de Lleida; España
Fil: Leskovar, C.. Universitat Koblenz; Alemania
Fil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España
Fil: Tejedo, M.. Universidad de Lleida; España
description In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57579
Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-281
0952-8369
1469-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57579
identifier_str_mv Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-281
0952-8369
1469-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.2010.00702.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1469-7998.2010.00702.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269491866632192
score 13.13397