Proximate mechanisms determining size variability in natterjack toads
- Autores
- Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; Tejedo, M.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.
Fil: Sinsch, U.. Universitat Koblenz; Alemania
Fil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oromi, N.. Universidad de Lleida; España
Fil: Leskovar, C.. Universitat Koblenz; Alemania
Fil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España
Fil: Tejedo, M.. Universidad de Lleida; España - Materia
-
Age at Maturity
Amphibia
Anura
Bergmann'S Rule
Life-History Traits
Longevity
Potential Reproductive Lifespan
Skeletochronology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57579
Ver los metadatos del registro completo
id |
CONICETDig_961b98c12634dd6b9a70c27f34f35161 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57579 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proximate mechanisms determining size variability in natterjack toadsSinsch, U.Marangoni, FedericoOromi, N.Leskovar, C.Sanuy, D.Tejedo, M.Age at MaturityAmphibiaAnuraBergmann'S RuleLife-History TraitsLongevityPotential Reproductive LifespanSkeletochronologyhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity.Fil: Sinsch, U.. Universitat Koblenz; AlemaniaFil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oromi, N.. Universidad de Lleida; EspañaFil: Leskovar, C.. Universitat Koblenz; AlemaniaFil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Tejedo, M.. Universidad de Lleida; EspañaWiley Blackwell Publishing, Inc2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57579Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-2810952-83691469-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.2010.00702.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1469-7998.2010.00702.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:57Zoai:ri.conicet.gov.ar:11336/57579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:57.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proximate mechanisms determining size variability in natterjack toads |
title |
Proximate mechanisms determining size variability in natterjack toads |
spellingShingle |
Proximate mechanisms determining size variability in natterjack toads Sinsch, U. Age at Maturity Amphibia Anura Bergmann'S Rule Life-History Traits Longevity Potential Reproductive Lifespan Skeletochronology |
title_short |
Proximate mechanisms determining size variability in natterjack toads |
title_full |
Proximate mechanisms determining size variability in natterjack toads |
title_fullStr |
Proximate mechanisms determining size variability in natterjack toads |
title_full_unstemmed |
Proximate mechanisms determining size variability in natterjack toads |
title_sort |
Proximate mechanisms determining size variability in natterjack toads |
dc.creator.none.fl_str_mv |
Sinsch, U. Marangoni, Federico Oromi, N. Leskovar, C. Sanuy, D. Tejedo, M. |
author |
Sinsch, U. |
author_facet |
Sinsch, U. Marangoni, Federico Oromi, N. Leskovar, C. Sanuy, D. Tejedo, M. |
author_role |
author |
author2 |
Marangoni, Federico Oromi, N. Leskovar, C. Sanuy, D. Tejedo, M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Age at Maturity Amphibia Anura Bergmann'S Rule Life-History Traits Longevity Potential Reproductive Lifespan Skeletochronology |
topic |
Age at Maturity Amphibia Anura Bergmann'S Rule Life-History Traits Longevity Potential Reproductive Lifespan Skeletochronology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity. Fil: Sinsch, U.. Universitat Koblenz; Alemania Fil: Marangoni, Federico. Universidad Nacional de Misiones; Argentina. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Oromi, N.. Universidad de Lleida; España Fil: Leskovar, C.. Universitat Koblenz; Alemania Fil: Sanuy, D.. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; España Fil: Tejedo, M.. Universidad de Lleida; España |
description |
In the toad Bufo calamita, among-population variation of size follows roughly a converse Bergmann cline, but populations exist that do not fit this pattern. We propose that latitudinal body size variation is a byproduct of adaptive covariation among the life-history traits juvenile growth rate, longevity and lifetime fecundity. We choose five populations (two in Andalusia, two in Catalonia and one in Rhineland-Palatinate) representing a variation of adult size from 39 mm to 95 mm snout-vent length, a latitudinal gradient from 37 to 50° and an altitudinal gradient from sea level to 420 m. Skeletochronology was used to estimate the age-related life-history traits of 313 toads and their lifetime pattern of growth. At southern latitudes, toads matured and reproduced earlier than those at northern latitudes, but had a reduced potential reproductive lifespan due to lower longevity. Age-adjusted adult size depended mainly on the size achieved between metamorphosis and first hibernation or aestivation, which in turn was influenced by local factors. We propose that first-year size corresponds to the duration of the aboveground activity period, temperature during the activity period and the type of shelter sites and hibernacula available in the habitat. After attaining sexual maturity, the growth rates did not differ among populations. Interactions of multiple environmental factors during the first year of life determine age at maturity, adult size and size variation among populations. Local body size and potential reproductive lifespan covary to optimize lifetime fecundity throughout the geographical range. The presence of a small-sized population in southern Spain does not fit the pattern predicted by a converse Bergmann cline, but is compatible with the hypothesis that body size variation among B. calamita populations may be the evolutionary byproduct of optimized lifetime fecundity. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57579 Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-281 0952-8369 1469-7998 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57579 |
identifier_str_mv |
Sinsch, U.; Marangoni, Federico; Oromi, N.; Leskovar, C.; Sanuy, D.; et al.; Proximate mechanisms determining size variability in natterjack toads; Wiley Blackwell Publishing, Inc; Journal Of Zoology; 281; 4; 8-2010; 272-281 0952-8369 1469-7998 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.2010.00702.x info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1469-7998.2010.00702.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269491866632192 |
score |
13.13397 |