Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models
- Autores
- Sánchez, Érica Yanina; Colman Lerner, Jorge Esteban; Porta, Atilio Andrés; Jacovkis, Pablo Miguel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency.
Fil: Sánchez, Érica Yanina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina
Fil: Colman Lerner, Jorge Esteban. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Porta, Atilio Andrés. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina
Fil: Jacovkis, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tres de Febrero; Argentina. Universidad de Buenos Aires; Argentina - Materia
-
Chemical Incident
Risk Analysis
Acute Exposure
Pollutant Dispersion Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23382
Ver los metadatos del registro completo
id |
CONICETDig_95af79e3c834917903e1642dd2e7b9c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23382 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion modelsSánchez, Érica YaninaColman Lerner, Jorge EstebanPorta, Atilio AndrésJacovkis, Pablo MiguelChemical IncidentRisk AnalysisAcute ExposurePollutant Dispersion Modelhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency.Fil: Sánchez, Érica Yanina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; ArgentinaFil: Colman Lerner, Jorge Esteban. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Porta, Atilio Andrés. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: Jacovkis, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tres de Febrero; Argentina. Universidad de Buenos Aires; ArgentinaElsevier2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23382Sánchez, Érica Yanina; Colman Lerner, Jorge Esteban; Porta, Atilio Andrés; Jacovkis, Pablo Miguel; Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models; Elsevier; Atmospheric Environment; 79; 7-2013; 486-4941352-2310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2013.07.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1352231013005347info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:42Zoai:ri.conicet.gov.ar:11336/23382instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:42.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
title |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
spellingShingle |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models Sánchez, Érica Yanina Chemical Incident Risk Analysis Acute Exposure Pollutant Dispersion Model |
title_short |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
title_full |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
title_fullStr |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
title_full_unstemmed |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
title_sort |
Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models |
dc.creator.none.fl_str_mv |
Sánchez, Érica Yanina Colman Lerner, Jorge Esteban Porta, Atilio Andrés Jacovkis, Pablo Miguel |
author |
Sánchez, Érica Yanina |
author_facet |
Sánchez, Érica Yanina Colman Lerner, Jorge Esteban Porta, Atilio Andrés Jacovkis, Pablo Miguel |
author_role |
author |
author2 |
Colman Lerner, Jorge Esteban Porta, Atilio Andrés Jacovkis, Pablo Miguel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Chemical Incident Risk Analysis Acute Exposure Pollutant Dispersion Model |
topic |
Chemical Incident Risk Analysis Acute Exposure Pollutant Dispersion Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency. Fil: Sánchez, Érica Yanina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina Fil: Colman Lerner, Jorge Esteban. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina Fil: Porta, Atilio Andrés. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina Fil: Jacovkis, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tres de Febrero; Argentina. Universidad de Buenos Aires; Argentina |
description |
Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23382 Sánchez, Érica Yanina; Colman Lerner, Jorge Esteban; Porta, Atilio Andrés; Jacovkis, Pablo Miguel; Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models; Elsevier; Atmospheric Environment; 79; 7-2013; 486-494 1352-2310 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23382 |
identifier_str_mv |
Sánchez, Érica Yanina; Colman Lerner, Jorge Esteban; Porta, Atilio Andrés; Jacovkis, Pablo Miguel; Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models; Elsevier; Atmospheric Environment; 79; 7-2013; 486-494 1352-2310 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2013.07.013 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1352231013005347 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083265186758656 |
score |
13.22299 |