Large-scale dynamo model for accretion disks

Autores
Peralta, Carlos Adolfo; Sraibman, Laura; Minotti, Fernando Oscar
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Magnetic fields in accretion disks play an important role in the rich dynamics of these systems. A dynamo theory describing the generation of these magnetic field is in general very complex and requires many assumptions in order to be of practical use. In this respect, a theory with as few assumptions as possible is desirable. Aims. To investigate the generation of magnetic fields in accretion disks around magnetized central objects, a large-scale dynamo model is employed that includes feedback effects on the mass motion due to the Lorentz force. The dynamo model was developed from the fundamental magnetohydrodynamics equations with a minimum of hypothesis, and was tested in the case of the Sun and other stars. It is applied to accretion disks for the first time. Methods. The magnetic field in the disk, generated by the mentioned dynamo theory, was matched to that of the central object, considered dipolar, and to that of a magnetosphere described with the Grad'Shafranov equation. The relation between axial current and magnetic flux required in the Grad'Shafranov equation was not imposed, but was self-consistently determined along with the full solution. Results. The model is able to reproduce the patterns of magnetic field lines obtained in several works, such as closed magnetic lines near the central object and open lines for larger radii. The maximum value of the field is located near the internal radius of the accretion disk, where the currents in the disk force the concentration of field lines of the central object in the magnetosphere around this region. By varying the values of stellar mass, stellar magnetic field, mass accretion rate, and internal radius of the disk, it is found that the stellar magnetic field is the most important parameter in the determination of the disk magnetic field. The stellar mass is of secondary importance. It affects the azimuthal component of the disk magnetic field. The internal radius of the disk affects the disk zonal magnetic field and is likewise less important.
Fil: Peralta, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Sraibman, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
ACCRETION, ACCRETION DISKS
CIRCUMSTELLAR MATTER
DYNAMO
ISM: JETS AND OUTFLOWS
MAGNETOHYDRODYNAMICS (MHD)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214092

id CONICETDig_958e77d146fd5f7ead2f7f12573af820
oai_identifier_str oai:ri.conicet.gov.ar:11336/214092
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Large-scale dynamo model for accretion disksPeralta, Carlos AdolfoSraibman, LauraMinotti, Fernando OscarACCRETION, ACCRETION DISKSCIRCUMSTELLAR MATTERDYNAMOISM: JETS AND OUTFLOWSMAGNETOHYDRODYNAMICS (MHD)https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Magnetic fields in accretion disks play an important role in the rich dynamics of these systems. A dynamo theory describing the generation of these magnetic field is in general very complex and requires many assumptions in order to be of practical use. In this respect, a theory with as few assumptions as possible is desirable. Aims. To investigate the generation of magnetic fields in accretion disks around magnetized central objects, a large-scale dynamo model is employed that includes feedback effects on the mass motion due to the Lorentz force. The dynamo model was developed from the fundamental magnetohydrodynamics equations with a minimum of hypothesis, and was tested in the case of the Sun and other stars. It is applied to accretion disks for the first time. Methods. The magnetic field in the disk, generated by the mentioned dynamo theory, was matched to that of the central object, considered dipolar, and to that of a magnetosphere described with the Grad'Shafranov equation. The relation between axial current and magnetic flux required in the Grad'Shafranov equation was not imposed, but was self-consistently determined along with the full solution. Results. The model is able to reproduce the patterns of magnetic field lines obtained in several works, such as closed magnetic lines near the central object and open lines for larger radii. The maximum value of the field is located near the internal radius of the accretion disk, where the currents in the disk force the concentration of field lines of the central object in the magnetosphere around this region. By varying the values of stellar mass, stellar magnetic field, mass accretion rate, and internal radius of the disk, it is found that the stellar magnetic field is the most important parameter in the determination of the disk magnetic field. The stellar mass is of secondary importance. It affects the azimuthal component of the disk magnetic field. The internal radius of the disk affects the disk zonal magnetic field and is likewise less important.Fil: Peralta, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Sraibman, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaEDP Sciences2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214092Peralta, Carlos Adolfo; Sraibman, Laura; Minotti, Fernando Oscar; Large-scale dynamo model for accretion disks; EDP Sciences; Astronomy and Astrophysics; 666; 10-2022; 1-70004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2022/10/aa42530-21/aa42530-21.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202142530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:11:37Zoai:ri.conicet.gov.ar:11336/214092instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:11:37.958CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Large-scale dynamo model for accretion disks
title Large-scale dynamo model for accretion disks
spellingShingle Large-scale dynamo model for accretion disks
Peralta, Carlos Adolfo
ACCRETION, ACCRETION DISKS
CIRCUMSTELLAR MATTER
DYNAMO
ISM: JETS AND OUTFLOWS
MAGNETOHYDRODYNAMICS (MHD)
title_short Large-scale dynamo model for accretion disks
title_full Large-scale dynamo model for accretion disks
title_fullStr Large-scale dynamo model for accretion disks
title_full_unstemmed Large-scale dynamo model for accretion disks
title_sort Large-scale dynamo model for accretion disks
dc.creator.none.fl_str_mv Peralta, Carlos Adolfo
Sraibman, Laura
Minotti, Fernando Oscar
author Peralta, Carlos Adolfo
author_facet Peralta, Carlos Adolfo
Sraibman, Laura
Minotti, Fernando Oscar
author_role author
author2 Sraibman, Laura
Minotti, Fernando Oscar
author2_role author
author
dc.subject.none.fl_str_mv ACCRETION, ACCRETION DISKS
CIRCUMSTELLAR MATTER
DYNAMO
ISM: JETS AND OUTFLOWS
MAGNETOHYDRODYNAMICS (MHD)
topic ACCRETION, ACCRETION DISKS
CIRCUMSTELLAR MATTER
DYNAMO
ISM: JETS AND OUTFLOWS
MAGNETOHYDRODYNAMICS (MHD)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Magnetic fields in accretion disks play an important role in the rich dynamics of these systems. A dynamo theory describing the generation of these magnetic field is in general very complex and requires many assumptions in order to be of practical use. In this respect, a theory with as few assumptions as possible is desirable. Aims. To investigate the generation of magnetic fields in accretion disks around magnetized central objects, a large-scale dynamo model is employed that includes feedback effects on the mass motion due to the Lorentz force. The dynamo model was developed from the fundamental magnetohydrodynamics equations with a minimum of hypothesis, and was tested in the case of the Sun and other stars. It is applied to accretion disks for the first time. Methods. The magnetic field in the disk, generated by the mentioned dynamo theory, was matched to that of the central object, considered dipolar, and to that of a magnetosphere described with the Grad'Shafranov equation. The relation between axial current and magnetic flux required in the Grad'Shafranov equation was not imposed, but was self-consistently determined along with the full solution. Results. The model is able to reproduce the patterns of magnetic field lines obtained in several works, such as closed magnetic lines near the central object and open lines for larger radii. The maximum value of the field is located near the internal radius of the accretion disk, where the currents in the disk force the concentration of field lines of the central object in the magnetosphere around this region. By varying the values of stellar mass, stellar magnetic field, mass accretion rate, and internal radius of the disk, it is found that the stellar magnetic field is the most important parameter in the determination of the disk magnetic field. The stellar mass is of secondary importance. It affects the azimuthal component of the disk magnetic field. The internal radius of the disk affects the disk zonal magnetic field and is likewise less important.
Fil: Peralta, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Sraibman, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description Context. Magnetic fields in accretion disks play an important role in the rich dynamics of these systems. A dynamo theory describing the generation of these magnetic field is in general very complex and requires many assumptions in order to be of practical use. In this respect, a theory with as few assumptions as possible is desirable. Aims. To investigate the generation of magnetic fields in accretion disks around magnetized central objects, a large-scale dynamo model is employed that includes feedback effects on the mass motion due to the Lorentz force. The dynamo model was developed from the fundamental magnetohydrodynamics equations with a minimum of hypothesis, and was tested in the case of the Sun and other stars. It is applied to accretion disks for the first time. Methods. The magnetic field in the disk, generated by the mentioned dynamo theory, was matched to that of the central object, considered dipolar, and to that of a magnetosphere described with the Grad'Shafranov equation. The relation between axial current and magnetic flux required in the Grad'Shafranov equation was not imposed, but was self-consistently determined along with the full solution. Results. The model is able to reproduce the patterns of magnetic field lines obtained in several works, such as closed magnetic lines near the central object and open lines for larger radii. The maximum value of the field is located near the internal radius of the accretion disk, where the currents in the disk force the concentration of field lines of the central object in the magnetosphere around this region. By varying the values of stellar mass, stellar magnetic field, mass accretion rate, and internal radius of the disk, it is found that the stellar magnetic field is the most important parameter in the determination of the disk magnetic field. The stellar mass is of secondary importance. It affects the azimuthal component of the disk magnetic field. The internal radius of the disk affects the disk zonal magnetic field and is likewise less important.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214092
Peralta, Carlos Adolfo; Sraibman, Laura; Minotti, Fernando Oscar; Large-scale dynamo model for accretion disks; EDP Sciences; Astronomy and Astrophysics; 666; 10-2022; 1-7
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214092
identifier_str_mv Peralta, Carlos Adolfo; Sraibman, Laura; Minotti, Fernando Oscar; Large-scale dynamo model for accretion disks; EDP Sciences; Astronomy and Astrophysics; 666; 10-2022; 1-7
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2022/10/aa42530-21/aa42530-21.html
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202142530
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426956608405504
score 13.10058