Observational consequences of a magnetic flux rope emerging into the corona
- Autores
- Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.
Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados Unidos
Fil: Fan, Y.. National Center for Atmospheric Research; Estados Unidos
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Fisher, G.. Space Science Laboratories; Estados Unidos
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21173
Ver los metadatos del registro completo
id |
CONICETDig_9578aa678d9de7b9616d2ccbb482cbd1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21173 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Observational consequences of a magnetic flux rope emerging into the coronaGibson, S. E.Fan, Y.Mandrini, Cristina HemilseFisher, G.Démoulin, Pascalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados UnidosFil: Fan, Y.. National Center for Atmospheric Research; Estados UnidosFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fisher, G.. Space Science Laboratories; Estados UnidosFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaIOP Publishing2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21173Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-6130004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/425294/metainfo:eu-repo/semantics/altIdentifier/doi/10.1086/425294info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:39Zoai:ri.conicet.gov.ar:11336/21173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:39.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Observational consequences of a magnetic flux rope emerging into the corona |
title |
Observational consequences of a magnetic flux rope emerging into the corona |
spellingShingle |
Observational consequences of a magnetic flux rope emerging into the corona Gibson, S. E. |
title_short |
Observational consequences of a magnetic flux rope emerging into the corona |
title_full |
Observational consequences of a magnetic flux rope emerging into the corona |
title_fullStr |
Observational consequences of a magnetic flux rope emerging into the corona |
title_full_unstemmed |
Observational consequences of a magnetic flux rope emerging into the corona |
title_sort |
Observational consequences of a magnetic flux rope emerging into the corona |
dc.creator.none.fl_str_mv |
Gibson, S. E. Fan, Y. Mandrini, Cristina Hemilse Fisher, G. Démoulin, Pascal |
author |
Gibson, S. E. |
author_facet |
Gibson, S. E. Fan, Y. Mandrini, Cristina Hemilse Fisher, G. Démoulin, Pascal |
author_role |
author |
author2 |
Fan, Y. Mandrini, Cristina Hemilse Fisher, G. Démoulin, Pascal |
author2_role |
author author author author |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations. Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados Unidos Fil: Fan, Y.. National Center for Atmospheric Research; Estados Unidos Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Fisher, G.. Space Science Laboratories; Estados Unidos Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia |
description |
We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21173 Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-613 0004-637X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21173 |
identifier_str_mv |
Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-613 0004-637X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/425294/meta info:eu-repo/semantics/altIdentifier/doi/10.1086/425294 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614340743790592 |
score |
13.070432 |