Observational consequences of a magnetic flux rope emerging into the corona

Autores
Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.
Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados Unidos
Fil: Fan, Y.. National Center for Atmospheric Research; Estados Unidos
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Fisher, G.. Space Science Laboratories; Estados Unidos
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21173

id CONICETDig_9578aa678d9de7b9616d2ccbb482cbd1
oai_identifier_str oai:ri.conicet.gov.ar:11336/21173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Observational consequences of a magnetic flux rope emerging into the coronaGibson, S. E.Fan, Y.Mandrini, Cristina HemilseFisher, G.Démoulin, Pascalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados UnidosFil: Fan, Y.. National Center for Atmospheric Research; Estados UnidosFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fisher, G.. Space Science Laboratories; Estados UnidosFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaIOP Publishing2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21173Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-6130004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/425294/metainfo:eu-repo/semantics/altIdentifier/doi/10.1086/425294info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:39Zoai:ri.conicet.gov.ar:11336/21173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:39.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Observational consequences of a magnetic flux rope emerging into the corona
title Observational consequences of a magnetic flux rope emerging into the corona
spellingShingle Observational consequences of a magnetic flux rope emerging into the corona
Gibson, S. E.
title_short Observational consequences of a magnetic flux rope emerging into the corona
title_full Observational consequences of a magnetic flux rope emerging into the corona
title_fullStr Observational consequences of a magnetic flux rope emerging into the corona
title_full_unstemmed Observational consequences of a magnetic flux rope emerging into the corona
title_sort Observational consequences of a magnetic flux rope emerging into the corona
dc.creator.none.fl_str_mv Gibson, S. E.
Fan, Y.
Mandrini, Cristina Hemilse
Fisher, G.
Démoulin, Pascal
author Gibson, S. E.
author_facet Gibson, S. E.
Fan, Y.
Mandrini, Cristina Hemilse
Fisher, G.
Démoulin, Pascal
author_role author
author2 Fan, Y.
Mandrini, Cristina Hemilse
Fisher, G.
Démoulin, Pascal
author2_role author
author
author
author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.
Fil: Gibson, S. E.. National Center for Atmospheric Research; Estados Unidos
Fil: Fan, Y.. National Center for Atmospheric Research; Estados Unidos
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Fisher, G.. Space Science Laboratories; Estados Unidos
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
description We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ``bald-patch-associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40°-200° per leg/sunspot, consistent with observations.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21173
Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-613
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21173
identifier_str_mv Gibson, S. E.; Fan, Y.; Mandrini, Cristina Hemilse; Fisher, G.; Démoulin, Pascal; Observational consequences of a magnetic flux rope emerging into the corona; IOP Publishing; Astrophysical Journal; 617; 1; 12-2004; 600-613
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/425294/meta
info:eu-repo/semantics/altIdentifier/doi/10.1086/425294
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614340743790592
score 13.070432