The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud

Autores
Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrian
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have integrated the orbits of the 76 scattered disk objects (SDOs), discovered through the end of 2002, plus 399 clones for 5 Gyr to study their dynamical evolution and the probability of falling in one of the following end states: reaching Jupiter's influence zone, hyperbolic ejection, or transfer to the Oort cloud. We find that nearly 50% of the SDOs are transferred to the Oort cloud (i.e., they reach heliocentric distances greater than 20,000 AU in a barycentric elliptical orbit), from which about 60% have their perihelia beyond Neptune's orbit (31 AU1 km incorporated into the Oort cloud is about 5 yr−1, which might be a non-negligible fraction of comet losses from the Oort cloud (probably around or even above 10%). Therefore, we conclude that the Oort cloud may have experienced and may be even experiencing a significant renovation of its population, and that the trans-neptunian belt—via the scattered disk—may be the main feeding source.
Fil: Fernández, Julio A.. Facultad de Ciencias; Uruguay
Fil: Gallardo, Tabaré. Facultad de Ciencias; Uruguay
Fil: Brunini, Adrian. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Materia
Edgeworth–Kuiper Belt
Scattered Disks
Oort Cloud
Comets
Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/36810

id CONICETDig_94f4de06ac11593ae889c8ba58eb00f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/36810
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloudFernández, Julio A.Gallardo, TabaréBrunini, AdrianEdgeworth–Kuiper BeltScattered DisksOort CloudCometsDynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have integrated the orbits of the 76 scattered disk objects (SDOs), discovered through the end of 2002, plus 399 clones for 5 Gyr to study their dynamical evolution and the probability of falling in one of the following end states: reaching Jupiter's influence zone, hyperbolic ejection, or transfer to the Oort cloud. We find that nearly 50% of the SDOs are transferred to the Oort cloud (i.e., they reach heliocentric distances greater than 20,000 AU in a barycentric elliptical orbit), from which about 60% have their perihelia beyond Neptune's orbit (31 AU<q<36 AU) at the moment of reaching the Oort cloud. This shows that Neptune acts as a dynamical barrier, scattering most of the bodies to near-parabolic orbits before they can approach or cross Neptune's orbit in non-resonant orbits (that may allow their transfer to the planetary region as Centaurs via close encounters with Neptune). Consequently, Neptune's dynamical barrier greatly favors insertion in the Oort cloud at the expense of the other end states mentioned above. We found that the current rate of SDOs with radii R>1 km incorporated into the Oort cloud is about 5 yr−1, which might be a non-negligible fraction of comet losses from the Oort cloud (probably around or even above 10%). Therefore, we conclude that the Oort cloud may have experienced and may be even experiencing a significant renovation of its population, and that the trans-neptunian belt—via the scattered disk—may be the main feeding source.Fil: Fernández, Julio A.. Facultad de Ciencias; UruguayFil: Gallardo, Tabaré. Facultad de Ciencias; UruguayFil: Brunini, Adrian. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaAcademic Press Inc Elsevier Science2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36810Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrian; The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud; Academic Press Inc Elsevier Science; Icarus; 172; 2; 12-2004; 372-3810019-1035CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2004.07.023info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0019103504002210?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:04Zoai:ri.conicet.gov.ar:11336/36810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:04.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
title The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
spellingShingle The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
Fernández, Julio A.
Edgeworth–Kuiper Belt
Scattered Disks
Oort Cloud
Comets
Dynamics
title_short The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
title_full The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
title_fullStr The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
title_full_unstemmed The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
title_sort The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud
dc.creator.none.fl_str_mv Fernández, Julio A.
Gallardo, Tabaré
Brunini, Adrian
author Fernández, Julio A.
author_facet Fernández, Julio A.
Gallardo, Tabaré
Brunini, Adrian
author_role author
author2 Gallardo, Tabaré
Brunini, Adrian
author2_role author
author
dc.subject.none.fl_str_mv Edgeworth–Kuiper Belt
Scattered Disks
Oort Cloud
Comets
Dynamics
topic Edgeworth–Kuiper Belt
Scattered Disks
Oort Cloud
Comets
Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have integrated the orbits of the 76 scattered disk objects (SDOs), discovered through the end of 2002, plus 399 clones for 5 Gyr to study their dynamical evolution and the probability of falling in one of the following end states: reaching Jupiter's influence zone, hyperbolic ejection, or transfer to the Oort cloud. We find that nearly 50% of the SDOs are transferred to the Oort cloud (i.e., they reach heliocentric distances greater than 20,000 AU in a barycentric elliptical orbit), from which about 60% have their perihelia beyond Neptune's orbit (31 AU<q<36 AU) at the moment of reaching the Oort cloud. This shows that Neptune acts as a dynamical barrier, scattering most of the bodies to near-parabolic orbits before they can approach or cross Neptune's orbit in non-resonant orbits (that may allow their transfer to the planetary region as Centaurs via close encounters with Neptune). Consequently, Neptune's dynamical barrier greatly favors insertion in the Oort cloud at the expense of the other end states mentioned above. We found that the current rate of SDOs with radii R>1 km incorporated into the Oort cloud is about 5 yr−1, which might be a non-negligible fraction of comet losses from the Oort cloud (probably around or even above 10%). Therefore, we conclude that the Oort cloud may have experienced and may be even experiencing a significant renovation of its population, and that the trans-neptunian belt—via the scattered disk—may be the main feeding source.
Fil: Fernández, Julio A.. Facultad de Ciencias; Uruguay
Fil: Gallardo, Tabaré. Facultad de Ciencias; Uruguay
Fil: Brunini, Adrian. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
description We have integrated the orbits of the 76 scattered disk objects (SDOs), discovered through the end of 2002, plus 399 clones for 5 Gyr to study their dynamical evolution and the probability of falling in one of the following end states: reaching Jupiter's influence zone, hyperbolic ejection, or transfer to the Oort cloud. We find that nearly 50% of the SDOs are transferred to the Oort cloud (i.e., they reach heliocentric distances greater than 20,000 AU in a barycentric elliptical orbit), from which about 60% have their perihelia beyond Neptune's orbit (31 AU<q<36 AU) at the moment of reaching the Oort cloud. This shows that Neptune acts as a dynamical barrier, scattering most of the bodies to near-parabolic orbits before they can approach or cross Neptune's orbit in non-resonant orbits (that may allow their transfer to the planetary region as Centaurs via close encounters with Neptune). Consequently, Neptune's dynamical barrier greatly favors insertion in the Oort cloud at the expense of the other end states mentioned above. We found that the current rate of SDOs with radii R>1 km incorporated into the Oort cloud is about 5 yr−1, which might be a non-negligible fraction of comet losses from the Oort cloud (probably around or even above 10%). Therefore, we conclude that the Oort cloud may have experienced and may be even experiencing a significant renovation of its population, and that the trans-neptunian belt—via the scattered disk—may be the main feeding source.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/36810
Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrian; The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud; Academic Press Inc Elsevier Science; Icarus; 172; 2; 12-2004; 372-381
0019-1035
CONICET Digital
CONICET
url http://hdl.handle.net/11336/36810
identifier_str_mv Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrian; The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud; Academic Press Inc Elsevier Science; Icarus; 172; 2; 12-2004; 372-381
0019-1035
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2004.07.023
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0019103504002210?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613882707968000
score 13.070432