Anomalous perovskite PbRuO3 stabilized under high pressure

Autores
Cheng, J. G.; Kweon, K. E.; Zhou, J. S.; Alonso, J. A.; Kong, P. P.; Liu, Y.; Jin,Changqing; Wu, Junjie; Lin, Jung Fu; Larregola, Sebastian Alberto; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc.
Fil: Cheng, J. G.. University of Texas at Austin; Estados Unidos. Chinese Academy of Sciences; República de China
Fil: Kweon, K. E.. University of Texas at Austin; Estados Unidos
Fil: Zhou, J. S.. University of Texas at Austin; Estados Unidos
Fil: Alonso, J. A.. Instituto de Ciencia de Materiales de Madrid; España
Fil: Kong, P. P.. Chinese Academy of Sciences; República de China
Fil: Liu, Y.. Chinese Academy of Sciences; República de China
Fil: Jin,Changqing. Chinese Academy of Sciences; República de China
Fil: Wu, Junjie. Chinese Academy of Sciences; República de China. University of Texas at Austin; Estados Unidos
Fil: Lin, Jung Fu. University of Texas at Austin; Estados Unidos
Fil: Larregola, Sebastian Alberto. University of Texas at Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Yang, Wenge. Carnegie Institution of Washington; Estados Unidos
Fil: Shen, Guoyin. Carnegie Institution of Washington; Estados Unidos
Fil: MacDonald, A. H.. University of Texas at Austin; Estados Unidos
Fil: Manthiram, Arumugam. University of Texas at Austin; Estados Unidos
Fil: Hwang, G. S.. University of Texas at Austin; Estados Unidos
Fil: Goodenough, John B.. University of Texas at Austin; Estados Unidos
Materia
PEROVSKITE
HIGH PRESSURE
INTERMETALLIC
RUTHENATE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29214

id CONICETDig_94dacf72b4ac0beca693846919e3d539
oai_identifier_str oai:ri.conicet.gov.ar:11336/29214
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Anomalous perovskite PbRuO3 stabilized under high pressureCheng, J. G.Kweon, K. E.Zhou, J. S.Alonso, J. A.Kong, P. P.Liu, Y.Jin,ChangqingWu, JunjieLin, Jung FuLarregola, Sebastian AlbertoYang, WengeShen, GuoyinMacDonald, A. H.Manthiram, ArumugamHwang, G. S.Goodenough, John B.PEROVSKITEHIGH PRESSUREINTERMETALLICRUTHENATEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc.Fil: Cheng, J. G.. University of Texas at Austin; Estados Unidos. Chinese Academy of Sciences; República de ChinaFil: Kweon, K. E.. University of Texas at Austin; Estados UnidosFil: Zhou, J. S.. University of Texas at Austin; Estados UnidosFil: Alonso, J. A.. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Kong, P. P.. Chinese Academy of Sciences; República de ChinaFil: Liu, Y.. Chinese Academy of Sciences; República de ChinaFil: Jin,Changqing. Chinese Academy of Sciences; República de ChinaFil: Wu, Junjie. Chinese Academy of Sciences; República de China. University of Texas at Austin; Estados UnidosFil: Lin, Jung Fu. University of Texas at Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University of Texas at Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Yang, Wenge. Carnegie Institution of Washington; Estados UnidosFil: Shen, Guoyin. Carnegie Institution of Washington; Estados UnidosFil: MacDonald, A. H.. University of Texas at Austin; Estados UnidosFil: Manthiram, Arumugam. University of Texas at Austin; Estados UnidosFil: Hwang, G. S.. University of Texas at Austin; Estados UnidosFil: Goodenough, John B.. University of Texas at Austin; Estados UnidosNational Academy of Sciences2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29214Cheng, J. G.; Kweon, K. E.; Zhou, J. S. ; Alonso, J. A.; Kong, P. P. ; et al.; Anomalous perovskite PbRuO3 stabilized under high pressure; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 110; 50; 10-2013; 20003-200070027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/110/50/20003info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1318494110info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864321/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:39Zoai:ri.conicet.gov.ar:11336/29214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:39.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Anomalous perovskite PbRuO3 stabilized under high pressure
title Anomalous perovskite PbRuO3 stabilized under high pressure
spellingShingle Anomalous perovskite PbRuO3 stabilized under high pressure
Cheng, J. G.
PEROVSKITE
HIGH PRESSURE
INTERMETALLIC
RUTHENATE
title_short Anomalous perovskite PbRuO3 stabilized under high pressure
title_full Anomalous perovskite PbRuO3 stabilized under high pressure
title_fullStr Anomalous perovskite PbRuO3 stabilized under high pressure
title_full_unstemmed Anomalous perovskite PbRuO3 stabilized under high pressure
title_sort Anomalous perovskite PbRuO3 stabilized under high pressure
dc.creator.none.fl_str_mv Cheng, J. G.
Kweon, K. E.
Zhou, J. S.
Alonso, J. A.
Kong, P. P.
Liu, Y.
Jin,Changqing
Wu, Junjie
Lin, Jung Fu
Larregola, Sebastian Alberto
Yang, Wenge
Shen, Guoyin
MacDonald, A. H.
Manthiram, Arumugam
Hwang, G. S.
Goodenough, John B.
author Cheng, J. G.
author_facet Cheng, J. G.
Kweon, K. E.
Zhou, J. S.
Alonso, J. A.
Kong, P. P.
Liu, Y.
Jin,Changqing
Wu, Junjie
Lin, Jung Fu
Larregola, Sebastian Alberto
Yang, Wenge
Shen, Guoyin
MacDonald, A. H.
Manthiram, Arumugam
Hwang, G. S.
Goodenough, John B.
author_role author
author2 Kweon, K. E.
Zhou, J. S.
Alonso, J. A.
Kong, P. P.
Liu, Y.
Jin,Changqing
Wu, Junjie
Lin, Jung Fu
Larregola, Sebastian Alberto
Yang, Wenge
Shen, Guoyin
MacDonald, A. H.
Manthiram, Arumugam
Hwang, G. S.
Goodenough, John B.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PEROVSKITE
HIGH PRESSURE
INTERMETALLIC
RUTHENATE
topic PEROVSKITE
HIGH PRESSURE
INTERMETALLIC
RUTHENATE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc.
Fil: Cheng, J. G.. University of Texas at Austin; Estados Unidos. Chinese Academy of Sciences; República de China
Fil: Kweon, K. E.. University of Texas at Austin; Estados Unidos
Fil: Zhou, J. S.. University of Texas at Austin; Estados Unidos
Fil: Alonso, J. A.. Instituto de Ciencia de Materiales de Madrid; España
Fil: Kong, P. P.. Chinese Academy of Sciences; República de China
Fil: Liu, Y.. Chinese Academy of Sciences; República de China
Fil: Jin,Changqing. Chinese Academy of Sciences; República de China
Fil: Wu, Junjie. Chinese Academy of Sciences; República de China. University of Texas at Austin; Estados Unidos
Fil: Lin, Jung Fu. University of Texas at Austin; Estados Unidos
Fil: Larregola, Sebastian Alberto. University of Texas at Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Yang, Wenge. Carnegie Institution of Washington; Estados Unidos
Fil: Shen, Guoyin. Carnegie Institution of Washington; Estados Unidos
Fil: MacDonald, A. H.. University of Texas at Austin; Estados Unidos
Fil: Manthiram, Arumugam. University of Texas at Austin; Estados Unidos
Fil: Hwang, G. S.. University of Texas at Austin; Estados Unidos
Fil: Goodenough, John B.. University of Texas at Austin; Estados Unidos
description Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29214
Cheng, J. G.; Kweon, K. E.; Zhou, J. S. ; Alonso, J. A.; Kong, P. P. ; et al.; Anomalous perovskite PbRuO3 stabilized under high pressure; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 110; 50; 10-2013; 20003-20007
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29214
identifier_str_mv Cheng, J. G.; Kweon, K. E.; Zhou, J. S. ; Alonso, J. A.; Kong, P. P. ; et al.; Anomalous perovskite PbRuO3 stabilized under high pressure; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 110; 50; 10-2013; 20003-20007
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/110/50/20003
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1318494110
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864321/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614435312762880
score 13.070432