Complexity-based discrepancy measures applied to detection of apnea-hypopnea events

Autores
Rolon, Roman Emanuel; Gareis, Iván Emilio; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure for classification purposes. In the context of feature selection problems, several complexity-based measures have been proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.
Fil: Rolon, Roman Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Gareis, Iván Emilio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Discriminative information
discrepancy measures
sparse representation
apnea-hypopnea events
pulse oximetry signal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87153

id CONICETDig_94c5c5f18dcd12529bc5ce9fdd583eaa
oai_identifier_str oai:ri.conicet.gov.ar:11336/87153
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complexity-based discrepancy measures applied to detection of apnea-hypopnea eventsRolon, Roman EmanuelGareis, Iván EmilioDi Persia, Leandro EzequielSpies, Ruben DanielRufiner, Hugo LeonardoDiscriminative informationdiscrepancy measuressparse representationapnea-hypopnea eventspulse oximetry signalhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure for classification purposes. In the context of feature selection problems, several complexity-based measures have been proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.Fil: Rolon, Roman Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Gareis, Iván Emilio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaJohn Wiley & Sons Inc2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87153Rolon, Roman Emanuel; Gareis, Iván Emilio; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Complexity-based discrepancy measures applied to detection of apnea-hypopnea events; John Wiley & Sons Inc; Complexity; 2018; 8-2018; 1-181076-2787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/complexity/2018/1435203/info:eu-repo/semantics/altIdentifier/doi/10.1155/2018/1435203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:45Zoai:ri.conicet.gov.ar:11336/87153instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:45.842CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
title Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
spellingShingle Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
Rolon, Roman Emanuel
Discriminative information
discrepancy measures
sparse representation
apnea-hypopnea events
pulse oximetry signal
title_short Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
title_full Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
title_fullStr Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
title_full_unstemmed Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
title_sort Complexity-based discrepancy measures applied to detection of apnea-hypopnea events
dc.creator.none.fl_str_mv Rolon, Roman Emanuel
Gareis, Iván Emilio
Di Persia, Leandro Ezequiel
Spies, Ruben Daniel
Rufiner, Hugo Leonardo
author Rolon, Roman Emanuel
author_facet Rolon, Roman Emanuel
Gareis, Iván Emilio
Di Persia, Leandro Ezequiel
Spies, Ruben Daniel
Rufiner, Hugo Leonardo
author_role author
author2 Gareis, Iván Emilio
Di Persia, Leandro Ezequiel
Spies, Ruben Daniel
Rufiner, Hugo Leonardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Discriminative information
discrepancy measures
sparse representation
apnea-hypopnea events
pulse oximetry signal
topic Discriminative information
discrepancy measures
sparse representation
apnea-hypopnea events
pulse oximetry signal
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure for classification purposes. In the context of feature selection problems, several complexity-based measures have been proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.
Fil: Rolon, Roman Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Gareis, Iván Emilio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure for classification purposes. In the context of feature selection problems, several complexity-based measures have been proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87153
Rolon, Roman Emanuel; Gareis, Iván Emilio; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Complexity-based discrepancy measures applied to detection of apnea-hypopnea events; John Wiley & Sons Inc; Complexity; 2018; 8-2018; 1-18
1076-2787
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87153
identifier_str_mv Rolon, Roman Emanuel; Gareis, Iván Emilio; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Complexity-based discrepancy measures applied to detection of apnea-hypopnea events; John Wiley & Sons Inc; Complexity; 2018; 8-2018; 1-18
1076-2787
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/complexity/2018/1435203/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2018/1435203
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782444546555904
score 12.928904