Neutrino emissivity in the quark-hadron mixed phase of neutron stars

Autores
Spinella, William M.; Weber, Fridolin; Contrera, Gustavo Aníbal Gabriel; Orsaria, Milva Gabriela
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ((Formula presented.) K) and quark fractions ((Formula presented.) , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.
Fil: Spinella, William M.. San Diego State University. Computational Sciences Research Center; Estados Unidos. San Diego State University; Estados Unidos
Fil: Weber, Fridolin. San Diego State University; Estados Unidos. University of California at San Diego; Estados Unidos
Fil: Contrera, Gustavo Aníbal Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
NEUTRON STARS
NEUTRINO EMISSIVITY
PHASE TRANSITIONS
EQUATION OF STATE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54379

id CONICETDig_9490e254d47d8b3a6e55ee6f7bc68d79
oai_identifier_str oai:ri.conicet.gov.ar:11336/54379
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Neutrino emissivity in the quark-hadron mixed phase of neutron starsSpinella, William M.Weber, FridolinContrera, Gustavo Aníbal GabrielOrsaria, Milva GabrielaNEUTRON STARSNEUTRINO EMISSIVITYPHASE TRANSITIONSEQUATION OF STATEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ((Formula presented.) K) and quark fractions ((Formula presented.) , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.Fil: Spinella, William M.. San Diego State University. Computational Sciences Research Center; Estados Unidos. San Diego State University; Estados UnidosFil: Weber, Fridolin. San Diego State University; Estados Unidos. University of California at San Diego; Estados UnidosFil: Contrera, Gustavo Aníbal Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaSpringer2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54379Spinella, William M.; Weber, Fridolin; Contrera, Gustavo Aníbal Gabriel; Orsaria, Milva Gabriela; Neutrino emissivity in the quark-hadron mixed phase of neutron stars; Springer; European Physical Journal A - Hadrons and Nuclei; 52; 3; 3-2016; 16611-1661121434-60011434-601XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epja/i2016-16061-xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1507.06067info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepja%2Fi2016-16061-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:51Zoai:ri.conicet.gov.ar:11336/54379instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:51.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Neutrino emissivity in the quark-hadron mixed phase of neutron stars
title Neutrino emissivity in the quark-hadron mixed phase of neutron stars
spellingShingle Neutrino emissivity in the quark-hadron mixed phase of neutron stars
Spinella, William M.
NEUTRON STARS
NEUTRINO EMISSIVITY
PHASE TRANSITIONS
EQUATION OF STATE
title_short Neutrino emissivity in the quark-hadron mixed phase of neutron stars
title_full Neutrino emissivity in the quark-hadron mixed phase of neutron stars
title_fullStr Neutrino emissivity in the quark-hadron mixed phase of neutron stars
title_full_unstemmed Neutrino emissivity in the quark-hadron mixed phase of neutron stars
title_sort Neutrino emissivity in the quark-hadron mixed phase of neutron stars
dc.creator.none.fl_str_mv Spinella, William M.
Weber, Fridolin
Contrera, Gustavo Aníbal Gabriel
Orsaria, Milva Gabriela
author Spinella, William M.
author_facet Spinella, William M.
Weber, Fridolin
Contrera, Gustavo Aníbal Gabriel
Orsaria, Milva Gabriela
author_role author
author2 Weber, Fridolin
Contrera, Gustavo Aníbal Gabriel
Orsaria, Milva Gabriela
author2_role author
author
author
dc.subject.none.fl_str_mv NEUTRON STARS
NEUTRINO EMISSIVITY
PHASE TRANSITIONS
EQUATION OF STATE
topic NEUTRON STARS
NEUTRINO EMISSIVITY
PHASE TRANSITIONS
EQUATION OF STATE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ((Formula presented.) K) and quark fractions ((Formula presented.) , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.
Fil: Spinella, William M.. San Diego State University. Computational Sciences Research Center; Estados Unidos. San Diego State University; Estados Unidos
Fil: Weber, Fridolin. San Diego State University; Estados Unidos. University of California at San Diego; Estados Unidos
Fil: Contrera, Gustavo Aníbal Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ((Formula presented.) K) and quark fractions ((Formula presented.) , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54379
Spinella, William M.; Weber, Fridolin; Contrera, Gustavo Aníbal Gabriel; Orsaria, Milva Gabriela; Neutrino emissivity in the quark-hadron mixed phase of neutron stars; Springer; European Physical Journal A - Hadrons and Nuclei; 52; 3; 3-2016; 16611-166112
1434-6001
1434-601X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54379
identifier_str_mv Spinella, William M.; Weber, Fridolin; Contrera, Gustavo Aníbal Gabriel; Orsaria, Milva Gabriela; Neutrino emissivity in the quark-hadron mixed phase of neutron stars; Springer; European Physical Journal A - Hadrons and Nuclei; 52; 3; 3-2016; 16611-166112
1434-6001
1434-601X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epja/i2016-16061-x
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1507.06067
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepja%2Fi2016-16061-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613004757303296
score 13.070432