Inexact Restoration method for nonlinear optimization without derivatives
- Autores
- Arouxet, Maria Belen; Echebest, Nélida Ester; Pilotta, Elvio Angel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A derivative-free optimization method is proposed for solving a general nonlinear programming problem. It is assumed that the derivatives of the objective function and the constraints are not available. The new method is based on the Inexact Restoration scheme, where each iteration is decomposed in two phases. In the first one, the violation of the feasibility is reduced. In the second one, the objective function is minimized onto a linearization of the nonlinear constraints. At both phases, polynomial interpolation models are used in order to approximate the objective function and the constraints. At the first phase a derivative-free solver for box constrained optimization can be used. For the second phase, we propose a new method ad-hoc based on trust-region strategy that uses the projection of the simplex gradient on the tangent space. Under suitable assumptions, the algorithm is well defined and convergence results are proved. A numerical implementation is described and numerical experiments are presented to validate the theoretical results.
Fil: Arouxet, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Echebest, Nélida Ester. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Pilotta, Elvio Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Derivative-Free Optimization
Inexact Restoration
Polynomial Interpolation
Trust-Region Methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77601
Ver los metadatos del registro completo
id |
CONICETDig_94252469a19c8728b58ae877a2177791 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77601 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inexact Restoration method for nonlinear optimization without derivativesArouxet, Maria BelenEchebest, Nélida EsterPilotta, Elvio AngelDerivative-Free OptimizationInexact RestorationPolynomial InterpolationTrust-Region Methodshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A derivative-free optimization method is proposed for solving a general nonlinear programming problem. It is assumed that the derivatives of the objective function and the constraints are not available. The new method is based on the Inexact Restoration scheme, where each iteration is decomposed in two phases. In the first one, the violation of the feasibility is reduced. In the second one, the objective function is minimized onto a linearization of the nonlinear constraints. At both phases, polynomial interpolation models are used in order to approximate the objective function and the constraints. At the first phase a derivative-free solver for box constrained optimization can be used. For the second phase, we propose a new method ad-hoc based on trust-region strategy that uses the projection of the simplex gradient on the tangent space. Under suitable assumptions, the algorithm is well defined and convergence results are proved. A numerical implementation is described and numerical experiments are presented to validate the theoretical results.Fil: Arouxet, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Echebest, Nélida Ester. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Pilotta, Elvio Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77601Arouxet, Maria Belen; Echebest, Nélida Ester; Pilotta, Elvio Angel; Inexact Restoration method for nonlinear optimization without derivatives; Elsevier Science; Journal Of Computational And Applied Mathematics; 290; 5-2015; 26-430377-0427CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2015.04.047info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377042715002733info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:40Zoai:ri.conicet.gov.ar:11336/77601instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:40.898CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inexact Restoration method for nonlinear optimization without derivatives |
title |
Inexact Restoration method for nonlinear optimization without derivatives |
spellingShingle |
Inexact Restoration method for nonlinear optimization without derivatives Arouxet, Maria Belen Derivative-Free Optimization Inexact Restoration Polynomial Interpolation Trust-Region Methods |
title_short |
Inexact Restoration method for nonlinear optimization without derivatives |
title_full |
Inexact Restoration method for nonlinear optimization without derivatives |
title_fullStr |
Inexact Restoration method for nonlinear optimization without derivatives |
title_full_unstemmed |
Inexact Restoration method for nonlinear optimization without derivatives |
title_sort |
Inexact Restoration method for nonlinear optimization without derivatives |
dc.creator.none.fl_str_mv |
Arouxet, Maria Belen Echebest, Nélida Ester Pilotta, Elvio Angel |
author |
Arouxet, Maria Belen |
author_facet |
Arouxet, Maria Belen Echebest, Nélida Ester Pilotta, Elvio Angel |
author_role |
author |
author2 |
Echebest, Nélida Ester Pilotta, Elvio Angel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Derivative-Free Optimization Inexact Restoration Polynomial Interpolation Trust-Region Methods |
topic |
Derivative-Free Optimization Inexact Restoration Polynomial Interpolation Trust-Region Methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A derivative-free optimization method is proposed for solving a general nonlinear programming problem. It is assumed that the derivatives of the objective function and the constraints are not available. The new method is based on the Inexact Restoration scheme, where each iteration is decomposed in two phases. In the first one, the violation of the feasibility is reduced. In the second one, the objective function is minimized onto a linearization of the nonlinear constraints. At both phases, polynomial interpolation models are used in order to approximate the objective function and the constraints. At the first phase a derivative-free solver for box constrained optimization can be used. For the second phase, we propose a new method ad-hoc based on trust-region strategy that uses the projection of the simplex gradient on the tangent space. Under suitable assumptions, the algorithm is well defined and convergence results are proved. A numerical implementation is described and numerical experiments are presented to validate the theoretical results. Fil: Arouxet, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Echebest, Nélida Ester. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Pilotta, Elvio Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
A derivative-free optimization method is proposed for solving a general nonlinear programming problem. It is assumed that the derivatives of the objective function and the constraints are not available. The new method is based on the Inexact Restoration scheme, where each iteration is decomposed in two phases. In the first one, the violation of the feasibility is reduced. In the second one, the objective function is minimized onto a linearization of the nonlinear constraints. At both phases, polynomial interpolation models are used in order to approximate the objective function and the constraints. At the first phase a derivative-free solver for box constrained optimization can be used. For the second phase, we propose a new method ad-hoc based on trust-region strategy that uses the projection of the simplex gradient on the tangent space. Under suitable assumptions, the algorithm is well defined and convergence results are proved. A numerical implementation is described and numerical experiments are presented to validate the theoretical results. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77601 Arouxet, Maria Belen; Echebest, Nélida Ester; Pilotta, Elvio Angel; Inexact Restoration method for nonlinear optimization without derivatives; Elsevier Science; Journal Of Computational And Applied Mathematics; 290; 5-2015; 26-43 0377-0427 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77601 |
identifier_str_mv |
Arouxet, Maria Belen; Echebest, Nélida Ester; Pilotta, Elvio Angel; Inexact Restoration method for nonlinear optimization without derivatives; Elsevier Science; Journal Of Computational And Applied Mathematics; 290; 5-2015; 26-43 0377-0427 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2015.04.047 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377042715002733 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613700754866176 |
score |
13.070432 |