Radial-velocity fitting challenge. II. First results of the analysis of the data set

Autores
Dumusque, X.; Borsa, F.; Damasso, M.; Diaz, Rodrigo Fernando; Gregory, P. C.; Hara, N. C.; Hatzes, A.; Rajpaul, V.; Tuomi, M.; Aigrain, S.; Anglada Escudé, G.; Bonomo, A. S.; Boué, G.; Dauvergne, F.; Frustagli, G.; Giacobbe, P.; Haywood, R. D.; Jones, H. R. A.; Laskar, J.; Pinamonti, M.; Poretti, E.; Rainer, M.; Ségransan, D.; Sozzetti, A.; Udry, S.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measurements. Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus preventing their detection. Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by the star, and by the instrument, performing such a comparison using real data is extremely challenging. Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals. Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate the simulated RVs, it is therefore possible to compare the efficiency of these different methods. Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach. Using the most efficient methodology, planets can be found down to with a threshold of K/N = 7.5 at the level of 80–90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than this threshold. In addition, for the best teams, no false positives with K/N > 7.5 were detected, while a non-negligible fraction of them appear for smaller K/N. A limit of K/N = 7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV measurements with similar properties to those of the different RV fitting challenge systems.
Fil: Dumusque, X.. Université de Genève; Suiza
Fil: Borsa, F.. Osservatorio Astronomico di Brera; Italia
Fil: Damasso, M.. Osservatorio Astrofisico di Torino; Italia
Fil: Diaz, Rodrigo Fernando. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Université de Genève; Suiza
Fil: Gregory, P. C.. University Of British Columbia; Canadá
Fil: Hara, N. C.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Hatzes, A.. Thüringer Landessternwarte Tautenburg; Alemania
Fil: Rajpaul, V.. University of Oxford; Reino Unido
Fil: Tuomi, M.. University Of Hertfordshire; Reino Unido
Fil: Aigrain, S.. University of Oxford; Reino Unido
Fil: Anglada Escudé, G.. Queen Mary University of London; Reino Unido
Fil: Bonomo, A. S.. Osservatorio Astrofisico di Torino; Italia
Fil: Boué, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Dauvergne, F.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Frustagli, G.. Osservatorio Astronomico di Brera; Italia
Fil: Giacobbe, P.. Osservatorio Astrofisico di Torino; Italia
Fil: Haywood, R. D.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos
Fil: Jones, H. R. A.. University of Hertfordshire,; Reino Unido
Fil: Laskar, J.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Pinamonti, M.. Osservatorio Astronomico di Trieste; Italia
Fil: Poretti, E.. Osservatorio Astronomico di Brera; Italia
Fil: Rainer, M.. Osservatorio Astronomico di Brera; Italia
Fil: Ségransan, D.. Observatoire de Genève; Suiza
Fil: Sozzetti, A.. Osservatorio Astrofisico di Torino; Italia
Fil: Udry, S.. Observatoire de Genève; Suiza
Materia
Techniques: Radial Velocities
Planetary Systems
Stars: Oscillations
Stars: Activity
Methods: Data Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18442

id CONICETDig_940406d794cfbc2c59dc17a456950728
oai_identifier_str oai:ri.conicet.gov.ar:11336/18442
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Radial-velocity fitting challenge. II. First results of the analysis of the data setDumusque, X.Borsa, F.Damasso, M.Diaz, Rodrigo FernandoGregory, P. C.Hara, N. C.Hatzes, A.Rajpaul, V.Tuomi, M.Aigrain, S.Anglada Escudé, G.Bonomo, A. S.Boué, G.Dauvergne, F.Frustagli, G.Giacobbe, P.Haywood, R. D.Jones, H. R. A.Laskar, J.Pinamonti, M.Poretti, E.Rainer, M.Ségransan, D.Sozzetti, A.Udry, S.Techniques: Radial VelocitiesPlanetary SystemsStars: OscillationsStars: ActivityMethods: Data Analysishttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measurements. Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus preventing their detection. Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by the star, and by the instrument, performing such a comparison using real data is extremely challenging. Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals. Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate the simulated RVs, it is therefore possible to compare the efficiency of these different methods. Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach. Using the most efficient methodology, planets can be found down to with a threshold of K/N = 7.5 at the level of 80–90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than this threshold. In addition, for the best teams, no false positives with K/N > 7.5 were detected, while a non-negligible fraction of them appear for smaller K/N. A limit of K/N = 7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV measurements with similar properties to those of the different RV fitting challenge systems.Fil: Dumusque, X.. Université de Genève; SuizaFil: Borsa, F.. Osservatorio Astronomico di Brera; ItaliaFil: Damasso, M.. Osservatorio Astrofisico di Torino; ItaliaFil: Diaz, Rodrigo Fernando. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Université de Genève; SuizaFil: Gregory, P. C.. University Of British Columbia; CanadáFil: Hara, N. C.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Hatzes, A.. Thüringer Landessternwarte Tautenburg; AlemaniaFil: Rajpaul, V.. University of Oxford; Reino UnidoFil: Tuomi, M.. University Of Hertfordshire; Reino UnidoFil: Aigrain, S.. University of Oxford; Reino UnidoFil: Anglada Escudé, G.. Queen Mary University of London; Reino UnidoFil: Bonomo, A. S.. Osservatorio Astrofisico di Torino; ItaliaFil: Boué, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Dauvergne, F.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Frustagli, G.. Osservatorio Astronomico di Brera; ItaliaFil: Giacobbe, P.. Osservatorio Astrofisico di Torino; ItaliaFil: Haywood, R. D.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Jones, H. R. A.. University of Hertfordshire,; Reino UnidoFil: Laskar, J.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Pinamonti, M.. Osservatorio Astronomico di Trieste; ItaliaFil: Poretti, E.. Osservatorio Astronomico di Brera; ItaliaFil: Rainer, M.. Osservatorio Astronomico di Brera; ItaliaFil: Ségransan, D.. Observatoire de Genève; SuizaFil: Sozzetti, A.. Osservatorio Astrofisico di Torino; ItaliaFil: Udry, S.. Observatoire de Genève; SuizaEdp Sciences2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18442Dumusque, X.; Borsa, F.; Damasso, M.; Diaz, Rodrigo Fernando; Gregory, P. C.; et al.; Radial-velocity fitting challenge. II. First results of the analysis of the data set; Edp Sciences; Astronomy And Astrophysics; 598; A133; 2-2017; 1-350004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628671info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.03674info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/02/aa28671-16/aa28671-16.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:24Zoai:ri.conicet.gov.ar:11336/18442instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:24.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Radial-velocity fitting challenge. II. First results of the analysis of the data set
title Radial-velocity fitting challenge. II. First results of the analysis of the data set
spellingShingle Radial-velocity fitting challenge. II. First results of the analysis of the data set
Dumusque, X.
Techniques: Radial Velocities
Planetary Systems
Stars: Oscillations
Stars: Activity
Methods: Data Analysis
title_short Radial-velocity fitting challenge. II. First results of the analysis of the data set
title_full Radial-velocity fitting challenge. II. First results of the analysis of the data set
title_fullStr Radial-velocity fitting challenge. II. First results of the analysis of the data set
title_full_unstemmed Radial-velocity fitting challenge. II. First results of the analysis of the data set
title_sort Radial-velocity fitting challenge. II. First results of the analysis of the data set
dc.creator.none.fl_str_mv Dumusque, X.
Borsa, F.
Damasso, M.
Diaz, Rodrigo Fernando
Gregory, P. C.
Hara, N. C.
Hatzes, A.
Rajpaul, V.
Tuomi, M.
Aigrain, S.
Anglada Escudé, G.
Bonomo, A. S.
Boué, G.
Dauvergne, F.
Frustagli, G.
Giacobbe, P.
Haywood, R. D.
Jones, H. R. A.
Laskar, J.
Pinamonti, M.
Poretti, E.
Rainer, M.
Ségransan, D.
Sozzetti, A.
Udry, S.
author Dumusque, X.
author_facet Dumusque, X.
Borsa, F.
Damasso, M.
Diaz, Rodrigo Fernando
Gregory, P. C.
Hara, N. C.
Hatzes, A.
Rajpaul, V.
Tuomi, M.
Aigrain, S.
Anglada Escudé, G.
Bonomo, A. S.
Boué, G.
Dauvergne, F.
Frustagli, G.
Giacobbe, P.
Haywood, R. D.
Jones, H. R. A.
Laskar, J.
Pinamonti, M.
Poretti, E.
Rainer, M.
Ségransan, D.
Sozzetti, A.
Udry, S.
author_role author
author2 Borsa, F.
Damasso, M.
Diaz, Rodrigo Fernando
Gregory, P. C.
Hara, N. C.
Hatzes, A.
Rajpaul, V.
Tuomi, M.
Aigrain, S.
Anglada Escudé, G.
Bonomo, A. S.
Boué, G.
Dauvergne, F.
Frustagli, G.
Giacobbe, P.
Haywood, R. D.
Jones, H. R. A.
Laskar, J.
Pinamonti, M.
Poretti, E.
Rainer, M.
Ségransan, D.
Sozzetti, A.
Udry, S.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Techniques: Radial Velocities
Planetary Systems
Stars: Oscillations
Stars: Activity
Methods: Data Analysis
topic Techniques: Radial Velocities
Planetary Systems
Stars: Oscillations
Stars: Activity
Methods: Data Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measurements. Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus preventing their detection. Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by the star, and by the instrument, performing such a comparison using real data is extremely challenging. Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals. Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate the simulated RVs, it is therefore possible to compare the efficiency of these different methods. Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach. Using the most efficient methodology, planets can be found down to with a threshold of K/N = 7.5 at the level of 80–90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than this threshold. In addition, for the best teams, no false positives with K/N > 7.5 were detected, while a non-negligible fraction of them appear for smaller K/N. A limit of K/N = 7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV measurements with similar properties to those of the different RV fitting challenge systems.
Fil: Dumusque, X.. Université de Genève; Suiza
Fil: Borsa, F.. Osservatorio Astronomico di Brera; Italia
Fil: Damasso, M.. Osservatorio Astrofisico di Torino; Italia
Fil: Diaz, Rodrigo Fernando. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Université de Genève; Suiza
Fil: Gregory, P. C.. University Of British Columbia; Canadá
Fil: Hara, N. C.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Hatzes, A.. Thüringer Landessternwarte Tautenburg; Alemania
Fil: Rajpaul, V.. University of Oxford; Reino Unido
Fil: Tuomi, M.. University Of Hertfordshire; Reino Unido
Fil: Aigrain, S.. University of Oxford; Reino Unido
Fil: Anglada Escudé, G.. Queen Mary University of London; Reino Unido
Fil: Bonomo, A. S.. Osservatorio Astrofisico di Torino; Italia
Fil: Boué, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Dauvergne, F.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Frustagli, G.. Osservatorio Astronomico di Brera; Italia
Fil: Giacobbe, P.. Osservatorio Astrofisico di Torino; Italia
Fil: Haywood, R. D.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos
Fil: Jones, H. R. A.. University of Hertfordshire,; Reino Unido
Fil: Laskar, J.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Pinamonti, M.. Osservatorio Astronomico di Trieste; Italia
Fil: Poretti, E.. Osservatorio Astronomico di Brera; Italia
Fil: Rainer, M.. Osservatorio Astronomico di Brera; Italia
Fil: Ségransan, D.. Observatoire de Genève; Suiza
Fil: Sozzetti, A.. Osservatorio Astrofisico di Torino; Italia
Fil: Udry, S.. Observatoire de Genève; Suiza
description Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measurements. Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus preventing their detection. Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by the star, and by the instrument, performing such a comparison using real data is extremely challenging. Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals. Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate the simulated RVs, it is therefore possible to compare the efficiency of these different methods. Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach. Using the most efficient methodology, planets can be found down to with a threshold of K/N = 7.5 at the level of 80–90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than this threshold. In addition, for the best teams, no false positives with K/N > 7.5 were detected, while a non-negligible fraction of them appear for smaller K/N. A limit of K/N = 7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV measurements with similar properties to those of the different RV fitting challenge systems.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18442
Dumusque, X.; Borsa, F.; Damasso, M.; Diaz, Rodrigo Fernando; Gregory, P. C.; et al.; Radial-velocity fitting challenge. II. First results of the analysis of the data set; Edp Sciences; Astronomy And Astrophysics; 598; A133; 2-2017; 1-35
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18442
identifier_str_mv Dumusque, X.; Borsa, F.; Damasso, M.; Diaz, Rodrigo Fernando; Gregory, P. C.; et al.; Radial-velocity fitting challenge. II. First results of the analysis of the data set; Edp Sciences; Astronomy And Astrophysics; 598; A133; 2-2017; 1-35
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628671
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.03674
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/02/aa28671-16/aa28671-16.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Edp Sciences
publisher.none.fl_str_mv Edp Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083262098702336
score 13.22299