Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models
- Autores
- Montoya, Oscar Danilo; Gil González, Walter; Grisales Norena, Luis; Orozco Henao, César; Serra, Federico Martin
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used.
Fil: Montoya, Oscar Danilo. Universidad Tecnologica de Bolivar; Colombia
Fil: Gil González, Walter. Universidad Tecnológica de Pereira; Colombia
Fil: Grisales Norena, Luis. Instituto Tecnológico Metropolitano; Colombia
Fil: Orozco Henao, César. Universidad del Norte; Colombia
Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina - Materia
-
ARTIFICIAL NEURAL NETWORKS
BATTERY ENERGY STORAGE SYSTEM
ECONOMIC DISPATCH PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124816
Ver los metadatos del registro completo
id |
CONICETDig_93d5662afe4044f93d123daa27b73480 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124816 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load ModelsMontoya, Oscar DaniloGil González, WalterGrisales Norena, LuisOrozco Henao, CésarSerra, Federico MartinARTIFICIAL NEURAL NETWORKSBATTERY ENERGY STORAGE SYSTEMECONOMIC DISPATCH PROBLEMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used.Fil: Montoya, Oscar Danilo. Universidad Tecnologica de Bolivar; ColombiaFil: Gil González, Walter. Universidad Tecnológica de Pereira; ColombiaFil: Grisales Norena, Luis. Instituto Tecnológico Metropolitano; ColombiaFil: Orozco Henao, César. Universidad del Norte; ColombiaFil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaMolecular Diversity Preservation International2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124816Montoya, Oscar Danilo; Gil González, Walter; Grisales Norena, Luis; Orozco Henao, César; Serra, Federico Martin; Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models; Molecular Diversity Preservation International; Energies; 12; 23; 11-2019; 1-101996-1073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/23/4494/htminfo:eu-repo/semantics/altIdentifier/doi/10.3390/en12234494info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:31Zoai:ri.conicet.gov.ar:11336/124816instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:32.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
title |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
spellingShingle |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models Montoya, Oscar Danilo ARTIFICIAL NEURAL NETWORKS BATTERY ENERGY STORAGE SYSTEM ECONOMIC DISPATCH PROBLEM |
title_short |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
title_full |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
title_fullStr |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
title_full_unstemmed |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
title_sort |
Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models |
dc.creator.none.fl_str_mv |
Montoya, Oscar Danilo Gil González, Walter Grisales Norena, Luis Orozco Henao, César Serra, Federico Martin |
author |
Montoya, Oscar Danilo |
author_facet |
Montoya, Oscar Danilo Gil González, Walter Grisales Norena, Luis Orozco Henao, César Serra, Federico Martin |
author_role |
author |
author2 |
Gil González, Walter Grisales Norena, Luis Orozco Henao, César Serra, Federico Martin |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS BATTERY ENERGY STORAGE SYSTEM ECONOMIC DISPATCH PROBLEM |
topic |
ARTIFICIAL NEURAL NETWORKS BATTERY ENERGY STORAGE SYSTEM ECONOMIC DISPATCH PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. Fil: Montoya, Oscar Danilo. Universidad Tecnologica de Bolivar; Colombia Fil: Gil González, Walter. Universidad Tecnológica de Pereira; Colombia Fil: Grisales Norena, Luis. Instituto Tecnológico Metropolitano; Colombia Fil: Orozco Henao, César. Universidad del Norte; Colombia Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina |
description |
This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124816 Montoya, Oscar Danilo; Gil González, Walter; Grisales Norena, Luis; Orozco Henao, César; Serra, Federico Martin; Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models; Molecular Diversity Preservation International; Energies; 12; 23; 11-2019; 1-10 1996-1073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124816 |
identifier_str_mv |
Montoya, Oscar Danilo; Gil González, Walter; Grisales Norena, Luis; Orozco Henao, César; Serra, Federico Martin; Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models; Molecular Diversity Preservation International; Energies; 12; 23; 11-2019; 1-10 1996-1073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/23/4494/htm info:eu-repo/semantics/altIdentifier/doi/10.3390/en12234494 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613954021621760 |
score |
13.070432 |