Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930

Autores
Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio Ricardo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.
Fil: Ravindra, B.. Indian Institute Of Astrophysics; India
Fil: Yoshimura, Keiji. Montana State University; Estados Unidos
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: EVOLUTION
SUN: FLARES
SUNSPOTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76772

id CONICETDig_93d4fbce4bbe31605cac6d53529c61cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/76772
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930Ravindra, B.Yoshimura, KeijiDasso, Sergio RicardoSUN: CORONAL MASS EJECTIONS (CMES)SUN: EVOLUTIONSUN: FLARESSUNSPOTShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.Fil: Ravindra, B.. Indian Institute Of Astrophysics; IndiaFil: Yoshimura, Keiji. Montana State University; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaIOP Publishing2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76772Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio Ricardo; Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930; IOP Publishing; Astrophysical Journal; 743; 1; 12-2011; 33-440004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/743/1/33info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:27Zoai:ri.conicet.gov.ar:11336/76772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:28.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
title Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
spellingShingle Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
Ravindra, B.
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: EVOLUTION
SUN: FLARES
SUNSPOTS
title_short Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
title_full Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
title_fullStr Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
title_full_unstemmed Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
title_sort Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
dc.creator.none.fl_str_mv Ravindra, B.
Yoshimura, Keiji
Dasso, Sergio Ricardo
author Ravindra, B.
author_facet Ravindra, B.
Yoshimura, Keiji
Dasso, Sergio Ricardo
author_role author
author2 Yoshimura, Keiji
Dasso, Sergio Ricardo
author2_role author
author
dc.subject.none.fl_str_mv SUN: CORONAL MASS EJECTIONS (CMES)
SUN: EVOLUTION
SUN: FLARES
SUNSPOTS
topic SUN: CORONAL MASS EJECTIONS (CMES)
SUN: EVOLUTION
SUN: FLARES
SUNSPOTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.
Fil: Ravindra, B.. Indian Institute Of Astrophysics; India
Fil: Yoshimura, Keiji. Montana State University; Estados Unidos
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76772
Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio Ricardo; Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930; IOP Publishing; Astrophysical Journal; 743; 1; 12-2011; 33-44
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76772
identifier_str_mv Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio Ricardo; Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930; IOP Publishing; Astrophysical Journal; 743; 1; 12-2011; 33-44
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/743/1/33
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613028608212992
score 13.070432