Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach

Autores
Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; Simari, Gerardo; Wassermann, Demian
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.
Fil: Zanitti, Gaston E.. No especifíca;
Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Iovene, Valentin. No especifíca;
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
DATALOG
META-ANALYSIS
NEUROIMAGING
OPEN-WORLD ASSUMPTION
PROBABILISTIC PROGRAMMING
QUERY ANSWERING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213901

id CONICETDig_932987474cef215c95aeb718d514517b
oai_identifier_str oai:ri.conicet.gov.ar:11336/213901
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang ApproachZanitti, Gaston E.Soto, Yamil Osvaldo OmarIovene, ValentinMartinez, Maria VaninaRodriguez, Ricardo OscarSimari, GerardoWassermann, DemianDATALOGMETA-ANALYSISNEUROIMAGINGOPEN-WORLD ASSUMPTIONPROBABILISTIC PROGRAMMINGQUERY ANSWERINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.Fil: Zanitti, Gaston E.. No especifíca;Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Iovene, Valentin. No especifíca;Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaHumana Press2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213901Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-4251539-2791CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12021-022-09612-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s12021-022-09612-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:59Zoai:ri.conicet.gov.ar:11336/213901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:59.671CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
title Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
spellingShingle Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
Zanitti, Gaston E.
DATALOG
META-ANALYSIS
NEUROIMAGING
OPEN-WORLD ASSUMPTION
PROBABILISTIC PROGRAMMING
QUERY ANSWERING
title_short Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
title_full Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
title_fullStr Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
title_full_unstemmed Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
title_sort Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
dc.creator.none.fl_str_mv Zanitti, Gaston E.
Soto, Yamil Osvaldo Omar
Iovene, Valentin
Martinez, Maria Vanina
Rodriguez, Ricardo Oscar
Simari, Gerardo
Wassermann, Demian
author Zanitti, Gaston E.
author_facet Zanitti, Gaston E.
Soto, Yamil Osvaldo Omar
Iovene, Valentin
Martinez, Maria Vanina
Rodriguez, Ricardo Oscar
Simari, Gerardo
Wassermann, Demian
author_role author
author2 Soto, Yamil Osvaldo Omar
Iovene, Valentin
Martinez, Maria Vanina
Rodriguez, Ricardo Oscar
Simari, Gerardo
Wassermann, Demian
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv DATALOG
META-ANALYSIS
NEUROIMAGING
OPEN-WORLD ASSUMPTION
PROBABILISTIC PROGRAMMING
QUERY ANSWERING
topic DATALOG
META-ANALYSIS
NEUROIMAGING
OPEN-WORLD ASSUMPTION
PROBABILISTIC PROGRAMMING
QUERY ANSWERING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.
Fil: Zanitti, Gaston E.. No especifíca;
Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Iovene, Valentin. No especifíca;
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213901
Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-425
1539-2791
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213901
identifier_str_mv Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-425
1539-2791
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12021-022-09612-4
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12021-022-09612-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Humana Press
publisher.none.fl_str_mv Humana Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082656336347136
score 13.22299