Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach
- Autores
- Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; Simari, Gerardo; Wassermann, Demian
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.
Fil: Zanitti, Gaston E.. No especifíca;
Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Iovene, Valentin. No especifíca;
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
DATALOG
META-ANALYSIS
NEUROIMAGING
OPEN-WORLD ASSUMPTION
PROBABILISTIC PROGRAMMING
QUERY ANSWERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213901
Ver los metadatos del registro completo
id |
CONICETDig_932987474cef215c95aeb718d514517b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213901 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang ApproachZanitti, Gaston E.Soto, Yamil Osvaldo OmarIovene, ValentinMartinez, Maria VaninaRodriguez, Ricardo OscarSimari, GerardoWassermann, DemianDATALOGMETA-ANALYSISNEUROIMAGINGOPEN-WORLD ASSUMPTIONPROBABILISTIC PROGRAMMINGQUERY ANSWERINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.Fil: Zanitti, Gaston E.. No especifíca;Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Iovene, Valentin. No especifíca;Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaHumana Press2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213901Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-4251539-2791CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12021-022-09612-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s12021-022-09612-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:59Zoai:ri.conicet.gov.ar:11336/213901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:59.671CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
title |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
spellingShingle |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach Zanitti, Gaston E. DATALOG META-ANALYSIS NEUROIMAGING OPEN-WORLD ASSUMPTION PROBABILISTIC PROGRAMMING QUERY ANSWERING |
title_short |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
title_full |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
title_fullStr |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
title_full_unstemmed |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
title_sort |
Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach |
dc.creator.none.fl_str_mv |
Zanitti, Gaston E. Soto, Yamil Osvaldo Omar Iovene, Valentin Martinez, Maria Vanina Rodriguez, Ricardo Oscar Simari, Gerardo Wassermann, Demian |
author |
Zanitti, Gaston E. |
author_facet |
Zanitti, Gaston E. Soto, Yamil Osvaldo Omar Iovene, Valentin Martinez, Maria Vanina Rodriguez, Ricardo Oscar Simari, Gerardo Wassermann, Demian |
author_role |
author |
author2 |
Soto, Yamil Osvaldo Omar Iovene, Valentin Martinez, Maria Vanina Rodriguez, Ricardo Oscar Simari, Gerardo Wassermann, Demian |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
DATALOG META-ANALYSIS NEUROIMAGING OPEN-WORLD ASSUMPTION PROBABILISTIC PROGRAMMING QUERY ANSWERING |
topic |
DATALOG META-ANALYSIS NEUROIMAGING OPEN-WORLD ASSUMPTION PROBABILISTIC PROGRAMMING QUERY ANSWERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios. Fil: Zanitti, Gaston E.. No especifíca; Fil: Soto, Yamil Osvaldo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Iovene, Valentin. No especifíca; Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Rodriguez, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Wassermann, Demian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213901 Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-425 1539-2791 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213901 |
identifier_str_mv |
Zanitti, Gaston E.; Soto, Yamil Osvaldo Omar; Iovene, Valentin; Martinez, Maria Vanina; Rodriguez, Ricardo Oscar; et al.; Scalable Query Answering Under Uncertainty to Neuroscientific Ontological Knowledge: The NeuroLang Approach; Humana Press; Neuroinformatics; 21; 2; 4-2023; 407-425 1539-2791 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12021-022-09612-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12021-022-09612-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Humana Press |
publisher.none.fl_str_mv |
Humana Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082656336347136 |
score |
13.22299 |