Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle

Autores
González Paleo, Luciana; Ravetta, Damián Andrés
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We compare carbon use strategies of congeneric annual (P. gracilis and P. angustifolia) and perennial (P. mendocina and P. pinetorum) Physaria (Brassicaceae), to evaluate the relevance of eco-physiological traits as determinants of differences in growth and to add information on the current debate on the agro-ecological suitability of perennial species for grain production in low resource ecosystems. Because of differences in growth and in seed-output previously found within this genus, we hypothesized that C acquisition strategies would not be fully coupled with predictions derived from a species life-cycle. Further, we expected to find different suites of traits related to C-acquisition among perennial species of Physaria. We found species with high (P. gracilis and P. pinetorum) and low (P. mendocina and P. angustifolia) relative growth rate (RGR) and biomass. The variation in RGR was linked to differences in specific leaf area (SLA) and allocation to leaves (leaf mass ratio, LMR) and roots (root mass ratio, RMR), but not to the species life-cycle. Physaria gracilis had high allocation to leaf area (leaf area ratio, LAR), LMR, high SLA, and low RMR and carbohydrates reserves. The slow-growth strategy found in P. mendocina was linked to low LAR, low SLA and large below-ground allocation. The other species showed intermediate strategies between these two. The sets of traits present in P. gracilis and in P. mendocina are extremes in the C acquisition–conservation trade-off, and may allow them to cope with low resource environments in different ways. SLA, LMR and RMR were the main determinants of RGR, while total non-structural carbohydrates (TNC) and leaf longevity were linked to the life-cycle. Taken together these characters define the intermediate growth strategies of P. angustifolia and P. pinetorum. These intermediate strategies were not dependent on the species life cycle and support the hypothesis of uncoupled relationships between growth, C acquisition strategies and life-cycle.
Fil: González Paleo, Luciana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravetta, Damián Andrés. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Relative Growth Rate
C Acquisition-Conservation Trade-Off
Physaria
New Crops
Arid Environments
Functional Traits
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20876

id CONICETDig_9288561c44ad8a65b4c55e7eb78dc218
oai_identifier_str oai:ri.conicet.gov.ar:11336/20876
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycleGonzález Paleo, LucianaRavetta, Damián AndrésRelative Growth RateC Acquisition-Conservation Trade-OffPhysariaNew CropsArid EnvironmentsFunctional Traitshttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4We compare carbon use strategies of congeneric annual (P. gracilis and P. angustifolia) and perennial (P. mendocina and P. pinetorum) Physaria (Brassicaceae), to evaluate the relevance of eco-physiological traits as determinants of differences in growth and to add information on the current debate on the agro-ecological suitability of perennial species for grain production in low resource ecosystems. Because of differences in growth and in seed-output previously found within this genus, we hypothesized that C acquisition strategies would not be fully coupled with predictions derived from a species life-cycle. Further, we expected to find different suites of traits related to C-acquisition among perennial species of Physaria. We found species with high (P. gracilis and P. pinetorum) and low (P. mendocina and P. angustifolia) relative growth rate (RGR) and biomass. The variation in RGR was linked to differences in specific leaf area (SLA) and allocation to leaves (leaf mass ratio, LMR) and roots (root mass ratio, RMR), but not to the species life-cycle. Physaria gracilis had high allocation to leaf area (leaf area ratio, LAR), LMR, high SLA, and low RMR and carbohydrates reserves. The slow-growth strategy found in P. mendocina was linked to low LAR, low SLA and large below-ground allocation. The other species showed intermediate strategies between these two. The sets of traits present in P. gracilis and in P. mendocina are extremes in the C acquisition–conservation trade-off, and may allow them to cope with low resource environments in different ways. SLA, LMR and RMR were the main determinants of RGR, while total non-structural carbohydrates (TNC) and leaf longevity were linked to the life-cycle. Taken together these characters define the intermediate growth strategies of P. angustifolia and P. pinetorum. These intermediate strategies were not dependent on the species life cycle and support the hypothesis of uncoupled relationships between growth, C acquisition strategies and life-cycle.Fil: González Paleo, Luciana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ravetta, Damián Andrés. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Gmbh2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20876González Paleo, Luciana; Ravetta, Damián Andrés; Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle; Elsevier Gmbh; Flora; 212; 3-2015; 1-90367-2530CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.flora.2015.02.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0367253015000109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:56Zoai:ri.conicet.gov.ar:11336/20876instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:56.883CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
title Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
spellingShingle Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
González Paleo, Luciana
Relative Growth Rate
C Acquisition-Conservation Trade-Off
Physaria
New Crops
Arid Environments
Functional Traits
title_short Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
title_full Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
title_fullStr Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
title_full_unstemmed Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
title_sort Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle
dc.creator.none.fl_str_mv González Paleo, Luciana
Ravetta, Damián Andrés
author González Paleo, Luciana
author_facet González Paleo, Luciana
Ravetta, Damián Andrés
author_role author
author2 Ravetta, Damián Andrés
author2_role author
dc.subject.none.fl_str_mv Relative Growth Rate
C Acquisition-Conservation Trade-Off
Physaria
New Crops
Arid Environments
Functional Traits
topic Relative Growth Rate
C Acquisition-Conservation Trade-Off
Physaria
New Crops
Arid Environments
Functional Traits
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv We compare carbon use strategies of congeneric annual (P. gracilis and P. angustifolia) and perennial (P. mendocina and P. pinetorum) Physaria (Brassicaceae), to evaluate the relevance of eco-physiological traits as determinants of differences in growth and to add information on the current debate on the agro-ecological suitability of perennial species for grain production in low resource ecosystems. Because of differences in growth and in seed-output previously found within this genus, we hypothesized that C acquisition strategies would not be fully coupled with predictions derived from a species life-cycle. Further, we expected to find different suites of traits related to C-acquisition among perennial species of Physaria. We found species with high (P. gracilis and P. pinetorum) and low (P. mendocina and P. angustifolia) relative growth rate (RGR) and biomass. The variation in RGR was linked to differences in specific leaf area (SLA) and allocation to leaves (leaf mass ratio, LMR) and roots (root mass ratio, RMR), but not to the species life-cycle. Physaria gracilis had high allocation to leaf area (leaf area ratio, LAR), LMR, high SLA, and low RMR and carbohydrates reserves. The slow-growth strategy found in P. mendocina was linked to low LAR, low SLA and large below-ground allocation. The other species showed intermediate strategies between these two. The sets of traits present in P. gracilis and in P. mendocina are extremes in the C acquisition–conservation trade-off, and may allow them to cope with low resource environments in different ways. SLA, LMR and RMR were the main determinants of RGR, while total non-structural carbohydrates (TNC) and leaf longevity were linked to the life-cycle. Taken together these characters define the intermediate growth strategies of P. angustifolia and P. pinetorum. These intermediate strategies were not dependent on the species life cycle and support the hypothesis of uncoupled relationships between growth, C acquisition strategies and life-cycle.
Fil: González Paleo, Luciana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravetta, Damián Andrés. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We compare carbon use strategies of congeneric annual (P. gracilis and P. angustifolia) and perennial (P. mendocina and P. pinetorum) Physaria (Brassicaceae), to evaluate the relevance of eco-physiological traits as determinants of differences in growth and to add information on the current debate on the agro-ecological suitability of perennial species for grain production in low resource ecosystems. Because of differences in growth and in seed-output previously found within this genus, we hypothesized that C acquisition strategies would not be fully coupled with predictions derived from a species life-cycle. Further, we expected to find different suites of traits related to C-acquisition among perennial species of Physaria. We found species with high (P. gracilis and P. pinetorum) and low (P. mendocina and P. angustifolia) relative growth rate (RGR) and biomass. The variation in RGR was linked to differences in specific leaf area (SLA) and allocation to leaves (leaf mass ratio, LMR) and roots (root mass ratio, RMR), but not to the species life-cycle. Physaria gracilis had high allocation to leaf area (leaf area ratio, LAR), LMR, high SLA, and low RMR and carbohydrates reserves. The slow-growth strategy found in P. mendocina was linked to low LAR, low SLA and large below-ground allocation. The other species showed intermediate strategies between these two. The sets of traits present in P. gracilis and in P. mendocina are extremes in the C acquisition–conservation trade-off, and may allow them to cope with low resource environments in different ways. SLA, LMR and RMR were the main determinants of RGR, while total non-structural carbohydrates (TNC) and leaf longevity were linked to the life-cycle. Taken together these characters define the intermediate growth strategies of P. angustifolia and P. pinetorum. These intermediate strategies were not dependent on the species life cycle and support the hypothesis of uncoupled relationships between growth, C acquisition strategies and life-cycle.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20876
González Paleo, Luciana; Ravetta, Damián Andrés; Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle; Elsevier Gmbh; Flora; 212; 3-2015; 1-9
0367-2530
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20876
identifier_str_mv González Paleo, Luciana; Ravetta, Damián Andrés; Carbon acquisition strategies uncoupled from predictions derivedfrom species life-cycle; Elsevier Gmbh; Flora; 212; 3-2015; 1-9
0367-2530
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.flora.2015.02.004
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0367253015000109
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Gmbh
publisher.none.fl_str_mv Elsevier Gmbh
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613775406137344
score 13.070432