EvolSOM: An R Package for evolutionary conservation analysis with SOMs
- Autores
- Prochetto, Santiago; Reinheimer, Renata; Stegmayer, Georgina
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. In the intricate structure of DNA, genes provide instructions for building cellular machinery, directing the processes that sustain life. RNA molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data presents a significant challenge. Results: We introduce evolSOM, a novel R package that utilizes Self-Organizing Maps (SOMs) to explore and visualize the conservation of biological variables, easing the integration of phenotypic and genotypic attributes. The package enables the projection of multi-dimensional expression profiles onto easily interpretable two-dimensional grids, aiding in the identification of conserved gene modules/phenotypes across multiple species or conditions. By constructing species-specific or condition-specific SOMs that capture non-redundant patterns, evolSOM allows the analysis of displacement of biological variables between species or conditions. Variables displaced together suggest membership in the same regulatory network, and the nature of the displacement (early/delayed/flip) may hold biological significance. These displacements are automatically calculated and graphically presented by the package, enabling efficient comparison and revealing both conserved and displaced variables. The package facilitates the integration of diverse phenotypic data types, such as morphological data or metabolomics, enabling the exploration of potential gene drivers underlying observed phenotypic changes. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses. As an illustrative example, we employed evolSOM to study the displacement of genes and phenotypic traits, successfully identifying potential drivers of phenotypic differentiation in grass leaves.
Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Conservation
SOM
Phenotipe
Genes
Evolution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263045
Ver los metadatos del registro completo
id |
CONICETDig_92058fdd23cc10c797770331facf374f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263045 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
EvolSOM: An R Package for evolutionary conservation analysis with SOMsProchetto, SantiagoReinheimer, RenataStegmayer, GeorginaConservationSOMPhenotipeGenesEvolutionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. In the intricate structure of DNA, genes provide instructions for building cellular machinery, directing the processes that sustain life. RNA molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data presents a significant challenge. Results: We introduce evolSOM, a novel R package that utilizes Self-Organizing Maps (SOMs) to explore and visualize the conservation of biological variables, easing the integration of phenotypic and genotypic attributes. The package enables the projection of multi-dimensional expression profiles onto easily interpretable two-dimensional grids, aiding in the identification of conserved gene modules/phenotypes across multiple species or conditions. By constructing species-specific or condition-specific SOMs that capture non-redundant patterns, evolSOM allows the analysis of displacement of biological variables between species or conditions. Variables displaced together suggest membership in the same regulatory network, and the nature of the displacement (early/delayed/flip) may hold biological significance. These displacements are automatically calculated and graphically presented by the package, enabling efficient comparison and revealing both conserved and displaced variables. The package facilitates the integration of diverse phenotypic data types, such as morphological data or metabolomics, enabling the exploration of potential gene drivers underlying observed phenotypic changes. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses. As an illustrative example, we employed evolSOM to study the displacement of genes and phenotypic traits, successfully identifying potential drivers of phenotypic differentiation in grass leaves.Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaCornell University2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263045Prochetto, Santiago; Reinheimer, Renata; Stegmayer, Georgina; EvolSOM: An R Package for evolutionary conservation analysis with SOMs; Cornell University; arxiv; 2-2024; 1-82331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2402.07948info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2402.07948info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:53Zoai:ri.conicet.gov.ar:11336/263045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:53.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
title |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
spellingShingle |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs Prochetto, Santiago Conservation SOM Phenotipe Genes Evolution |
title_short |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
title_full |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
title_fullStr |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
title_full_unstemmed |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
title_sort |
EvolSOM: An R Package for evolutionary conservation analysis with SOMs |
dc.creator.none.fl_str_mv |
Prochetto, Santiago Reinheimer, Renata Stegmayer, Georgina |
author |
Prochetto, Santiago |
author_facet |
Prochetto, Santiago Reinheimer, Renata Stegmayer, Georgina |
author_role |
author |
author2 |
Reinheimer, Renata Stegmayer, Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Conservation SOM Phenotipe Genes Evolution |
topic |
Conservation SOM Phenotipe Genes Evolution |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. In the intricate structure of DNA, genes provide instructions for building cellular machinery, directing the processes that sustain life. RNA molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data presents a significant challenge. Results: We introduce evolSOM, a novel R package that utilizes Self-Organizing Maps (SOMs) to explore and visualize the conservation of biological variables, easing the integration of phenotypic and genotypic attributes. The package enables the projection of multi-dimensional expression profiles onto easily interpretable two-dimensional grids, aiding in the identification of conserved gene modules/phenotypes across multiple species or conditions. By constructing species-specific or condition-specific SOMs that capture non-redundant patterns, evolSOM allows the analysis of displacement of biological variables between species or conditions. Variables displaced together suggest membership in the same regulatory network, and the nature of the displacement (early/delayed/flip) may hold biological significance. These displacements are automatically calculated and graphically presented by the package, enabling efficient comparison and revealing both conserved and displaced variables. The package facilitates the integration of diverse phenotypic data types, such as morphological data or metabolomics, enabling the exploration of potential gene drivers underlying observed phenotypic changes. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses. As an illustrative example, we employed evolSOM to study the displacement of genes and phenotypic traits, successfully identifying potential drivers of phenotypic differentiation in grass leaves. Fil: Prochetto, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. In the intricate structure of DNA, genes provide instructions for building cellular machinery, directing the processes that sustain life. RNA molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data presents a significant challenge. Results: We introduce evolSOM, a novel R package that utilizes Self-Organizing Maps (SOMs) to explore and visualize the conservation of biological variables, easing the integration of phenotypic and genotypic attributes. The package enables the projection of multi-dimensional expression profiles onto easily interpretable two-dimensional grids, aiding in the identification of conserved gene modules/phenotypes across multiple species or conditions. By constructing species-specific or condition-specific SOMs that capture non-redundant patterns, evolSOM allows the analysis of displacement of biological variables between species or conditions. Variables displaced together suggest membership in the same regulatory network, and the nature of the displacement (early/delayed/flip) may hold biological significance. These displacements are automatically calculated and graphically presented by the package, enabling efficient comparison and revealing both conserved and displaced variables. The package facilitates the integration of diverse phenotypic data types, such as morphological data or metabolomics, enabling the exploration of potential gene drivers underlying observed phenotypic changes. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses. As an illustrative example, we employed evolSOM to study the displacement of genes and phenotypic traits, successfully identifying potential drivers of phenotypic differentiation in grass leaves. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263045 Prochetto, Santiago; Reinheimer, Renata; Stegmayer, Georgina; EvolSOM: An R Package for evolutionary conservation analysis with SOMs; Cornell University; arxiv; 2-2024; 1-8 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263045 |
identifier_str_mv |
Prochetto, Santiago; Reinheimer, Renata; Stegmayer, Georgina; EvolSOM: An R Package for evolutionary conservation analysis with SOMs; Cornell University; arxiv; 2-2024; 1-8 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2402.07948 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2402.07948 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614425416302592 |
score |
13.070432 |