Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs

Autores
Gebre, Sara T.; Martínez Gómez, Luis; He, Sheng; Yang, Zhicheng; Cattaneo, Mauricio; Ribeiro, Raphael F.; Lian, Tianquan
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hybrid photocatalysts consisting of molecular catalyst functionalized semiconductors have attracted intense recent interest in solar fuel applications. Charge transfer interactions between the molecular catalyst and semiconductor have been long recognized to affect catalyst properties by controlling photoinduced charge separation across the semiconductor/molecule interface. In this paper, we investigate how such an interaction can also affect Fano resonance between the catalyst vibration and the intraband absorption of semiconductors. Using [Re(3,3’-disulfide-2,2’- bipyridine)(CO)3Cl] (ReS2) functionalized CdSe/ZnS core/shell QDs as a model system, we show that the CO stretching mode of the catalyst can interact with the broad intraband absorption of conduction band electrons. Detailed analysis shows that the Fano resonance asymmetry factor q, decreases at larger ZnS shell thickness. This experimental finding is consistent with a theoretical model that assumes that the vibronic interaction leading to the observed Fano resonances is mediated by effective charge transfer interactions between the QD conduction band electron and adsorbed catalyst. Because of the Type I band alignment in the CdSe/ZnS QDs, an increasing shell thickness leads to a decreasing CB electron density at the ZnS shell surface, reducing electronic coupling and the charge transfer interaction with the adsorbed catalysts.
Fil: Gebre, Sara T.. University of Emory; Estados Unidos
Fil: Martínez Gómez, Luis. University of Emory; Estados Unidos
Fil: He, Sheng. University of Emory; Estados Unidos
Fil: Yang, Zhicheng. University of Emory; Estados Unidos
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Ribeiro, Raphael F.. University of Emory; Estados Unidos
Fil: Lian, Tianquan. University of Emory; Estados Unidos
Materia
Excitons
Fano resonances
Quantum chemical dynamics
Catalysts and Catalysis
Vibrational spectra
Renewable fuels
Quantum dots
Electronic coupling
Electronic band structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/272121

id CONICETDig_92015155ac6d58e1b65bd5d672004852
oai_identifier_str oai:ri.conicet.gov.ar:11336/272121
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDsGebre, Sara T.Martínez Gómez, LuisHe, ShengYang, ZhichengCattaneo, MauricioRibeiro, Raphael F.Lian, TianquanExcitonsFano resonancesQuantum chemical dynamicsCatalysts and CatalysisVibrational spectraRenewable fuelsQuantum dotsElectronic couplingElectronic band structurehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Hybrid photocatalysts consisting of molecular catalyst functionalized semiconductors have attracted intense recent interest in solar fuel applications. Charge transfer interactions between the molecular catalyst and semiconductor have been long recognized to affect catalyst properties by controlling photoinduced charge separation across the semiconductor/molecule interface. In this paper, we investigate how such an interaction can also affect Fano resonance between the catalyst vibration and the intraband absorption of semiconductors. Using [Re(3,3’-disulfide-2,2’- bipyridine)(CO)3Cl] (ReS2) functionalized CdSe/ZnS core/shell QDs as a model system, we show that the CO stretching mode of the catalyst can interact with the broad intraband absorption of conduction band electrons. Detailed analysis shows that the Fano resonance asymmetry factor q, decreases at larger ZnS shell thickness. This experimental finding is consistent with a theoretical model that assumes that the vibronic interaction leading to the observed Fano resonances is mediated by effective charge transfer interactions between the QD conduction band electron and adsorbed catalyst. Because of the Type I band alignment in the CdSe/ZnS QDs, an increasing shell thickness leads to a decreasing CB electron density at the ZnS shell surface, reducing electronic coupling and the charge transfer interaction with the adsorbed catalysts.Fil: Gebre, Sara T.. University of Emory; Estados UnidosFil: Martínez Gómez, Luis. University of Emory; Estados UnidosFil: He, Sheng. University of Emory; Estados UnidosFil: Yang, Zhicheng. University of Emory; Estados UnidosFil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; ArgentinaFil: Ribeiro, Raphael F.. University of Emory; Estados UnidosFil: Lian, Tianquan. University of Emory; Estados UnidosAmerican Institute of Physics2025-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272121Gebre, Sara T.; Martínez Gómez, Luis; He, Sheng; Yang, Zhicheng; Cattaneo, Mauricio; et al.; Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs; American Institute of Physics; Journal of Chemical Physics; 163; 8; 8-2025; 1-170021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jcp/article-abstract/163/8/084713/3360440/Shell-thickness-dependent-Fano-resonance-ininfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0276905info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:48:03Zoai:ri.conicet.gov.ar:11336/272121instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:48:03.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
title Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
spellingShingle Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
Gebre, Sara T.
Excitons
Fano resonances
Quantum chemical dynamics
Catalysts and Catalysis
Vibrational spectra
Renewable fuels
Quantum dots
Electronic coupling
Electronic band structure
title_short Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
title_full Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
title_fullStr Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
title_full_unstemmed Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
title_sort Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs
dc.creator.none.fl_str_mv Gebre, Sara T.
Martínez Gómez, Luis
He, Sheng
Yang, Zhicheng
Cattaneo, Mauricio
Ribeiro, Raphael F.
Lian, Tianquan
author Gebre, Sara T.
author_facet Gebre, Sara T.
Martínez Gómez, Luis
He, Sheng
Yang, Zhicheng
Cattaneo, Mauricio
Ribeiro, Raphael F.
Lian, Tianquan
author_role author
author2 Martínez Gómez, Luis
He, Sheng
Yang, Zhicheng
Cattaneo, Mauricio
Ribeiro, Raphael F.
Lian, Tianquan
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Excitons
Fano resonances
Quantum chemical dynamics
Catalysts and Catalysis
Vibrational spectra
Renewable fuels
Quantum dots
Electronic coupling
Electronic band structure
topic Excitons
Fano resonances
Quantum chemical dynamics
Catalysts and Catalysis
Vibrational spectra
Renewable fuels
Quantum dots
Electronic coupling
Electronic band structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hybrid photocatalysts consisting of molecular catalyst functionalized semiconductors have attracted intense recent interest in solar fuel applications. Charge transfer interactions between the molecular catalyst and semiconductor have been long recognized to affect catalyst properties by controlling photoinduced charge separation across the semiconductor/molecule interface. In this paper, we investigate how such an interaction can also affect Fano resonance between the catalyst vibration and the intraband absorption of semiconductors. Using [Re(3,3’-disulfide-2,2’- bipyridine)(CO)3Cl] (ReS2) functionalized CdSe/ZnS core/shell QDs as a model system, we show that the CO stretching mode of the catalyst can interact with the broad intraband absorption of conduction band electrons. Detailed analysis shows that the Fano resonance asymmetry factor q, decreases at larger ZnS shell thickness. This experimental finding is consistent with a theoretical model that assumes that the vibronic interaction leading to the observed Fano resonances is mediated by effective charge transfer interactions between the QD conduction band electron and adsorbed catalyst. Because of the Type I band alignment in the CdSe/ZnS QDs, an increasing shell thickness leads to a decreasing CB electron density at the ZnS shell surface, reducing electronic coupling and the charge transfer interaction with the adsorbed catalysts.
Fil: Gebre, Sara T.. University of Emory; Estados Unidos
Fil: Martínez Gómez, Luis. University of Emory; Estados Unidos
Fil: He, Sheng. University of Emory; Estados Unidos
Fil: Yang, Zhicheng. University of Emory; Estados Unidos
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Ribeiro, Raphael F.. University of Emory; Estados Unidos
Fil: Lian, Tianquan. University of Emory; Estados Unidos
description Hybrid photocatalysts consisting of molecular catalyst functionalized semiconductors have attracted intense recent interest in solar fuel applications. Charge transfer interactions between the molecular catalyst and semiconductor have been long recognized to affect catalyst properties by controlling photoinduced charge separation across the semiconductor/molecule interface. In this paper, we investigate how such an interaction can also affect Fano resonance between the catalyst vibration and the intraband absorption of semiconductors. Using [Re(3,3’-disulfide-2,2’- bipyridine)(CO)3Cl] (ReS2) functionalized CdSe/ZnS core/shell QDs as a model system, we show that the CO stretching mode of the catalyst can interact with the broad intraband absorption of conduction band electrons. Detailed analysis shows that the Fano resonance asymmetry factor q, decreases at larger ZnS shell thickness. This experimental finding is consistent with a theoretical model that assumes that the vibronic interaction leading to the observed Fano resonances is mediated by effective charge transfer interactions between the QD conduction band electron and adsorbed catalyst. Because of the Type I band alignment in the CdSe/ZnS QDs, an increasing shell thickness leads to a decreasing CB electron density at the ZnS shell surface, reducing electronic coupling and the charge transfer interaction with the adsorbed catalysts.
publishDate 2025
dc.date.none.fl_str_mv 2025-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/272121
Gebre, Sara T.; Martínez Gómez, Luis; He, Sheng; Yang, Zhicheng; Cattaneo, Mauricio; et al.; Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs; American Institute of Physics; Journal of Chemical Physics; 163; 8; 8-2025; 1-17
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/272121
identifier_str_mv Gebre, Sara T.; Martínez Gómez, Luis; He, Sheng; Yang, Zhicheng; Cattaneo, Mauricio; et al.; Shell-thickness dependent Fano resonance in molecular catalyst functionalized CdSe/ZnS core/shell QDs; American Institute of Physics; Journal of Chemical Physics; 163; 8; 8-2025; 1-17
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jcp/article-abstract/163/8/084713/3360440/Shell-thickness-dependent-Fano-resonance-in
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0276905
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426491368865792
score 13.10058